-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathset_params_buildings.asv
75 lines (53 loc) · 2.13 KB
/
set_params_buildings.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
% Script for setting the parameters
%--------------------------------------------------------------------------
%% Add current folder to the top of the search path
% Do not change
addpath(genpath('.'))
% -------------
%% Set up parameters
% Do not change
params.layer = 1;
params.alpha = 0;
params.D_iter = 50;
%--------------------------------------------------------------------------
% Upsampling size. Should be the x,y dimension of the volumes
params.upsample = [1500 1500];
% Number of scales
params.numscales = 6;
% Receptive field size e.g. 9x9
% Assume single modality to simplify
params.rfSize= [9 9 1];
% size of region?
params.regSize = [params.upsample(1) + params.rfSize(1) - 1 params.upsample(2) + params.rfSize(2) - 1 1];
% # of total pixels / # of lesion pixels
params.ratio = 15; % Ask Vincent about that parameter
% Number of patches to train dictionary
params.npatches = 100000;
% Number of features per scale. Total # of features: nfeats * numscales
params.nfeats = 32;
%--------------------------------------------------------------------------
%Type of encoder and parametes
params.encoder = 'omp'; % omp, softThresh,sc(s)
% K for ompK algorithm
params.omp_k = 4;
%Threshold alpha for soft thresholding in encoding
params.alpha = 0.01;
%--------------------------------------------------------------------------
%Classification setup
%Type of the classifier
params.classifier = 'logistic_reg'; % logistic_reg, svm, RF
%number of trees if RF is being used
params.numTree = 50;
%--------------------------------------------------------------------------
%Train data directory
basedir = '/usr/data/BuildingDetectionML/';%'/usr/data/BuildingDetectionML/';%'/home/mennatullah/Datasets/BuildingDetectionML/';
params.scansdir = strcat(basedir, 'training/input/');
params.annotdir = strcat(basedir, 'training/target/');
params.range = 2;
%Test data directory
params.testdatadir = strcat(basedir, 'TestData/');
params.testgrounddir = strcat(basedir, 'TestDataGroundTruht/');
%--------------------------------------------------------------------------
params.dictionary_type= 'omp'; % KSVD, omp
disp ('parameters that are being used');
params