-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathHorn.fs
720 lines (653 loc) · 24.8 KB
/
Horn.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
/// <summary>
/// Backend for emitting Horn clauses for HSF consumption.
/// </summary>
module Starling.Backends.Horn
open Chessie.ErrorHandling
open Starling.Collections
open Starling.Semantics
open Starling.Utils
open Starling.Core.Definer
open Starling.Core.TypeSystem
open Starling.Core.Var
open Starling.Core.Expr
open Starling.Core.View
open Starling.Core.Traversal
open Starling.Core.Model
open Starling.Core.Symbolic
open Starling.Core.Instantiate
open Starling.Core.GuardedView
/// <summary>
/// Types for the Horn clause backend, including errors.
/// </summary>
[<AutoOpen>]
module Types =
/// A literal in a Datalog-style Horn clause.
/// We model Datalog terms as Starling expressions, refusing those
/// expressions not modellable in Datalog at output time.
/// Only arithmetic expressions can be modelled in HSF, so we disallow
/// Booleans.
type Literal =
/// A predicate.
| Pred of Func<VIntExpr>
| And of Literal list
| Or of Literal list
| True
| False
| ITE of Literal * Literal * Literal
| Eq of VIntExpr * VIntExpr
| Neq of VIntExpr * VIntExpr
| Gt of VIntExpr * VIntExpr
| Ge of VIntExpr * VIntExpr
| Le of VIntExpr * VIntExpr
| Lt of VIntExpr * VIntExpr
/// A Horn clause, in Datalog/HSF form.
type Horn =
/// A normal Horn clause.
| Clause of head: Literal * body: (Literal list)
/// A comment attached to a Horn clause.
| Comment of cmt: string
/// A query-naming call.
| QueryNaming of Func<string>
/// <summary>
/// An error caused when emitting a Horn clause.
/// </summary>
type Error =
/// <summary>
/// A Func is inconsistent with its definition.
/// </summary>
| InconsistentFunc of func : MVFunc * err : Starling.Core.Definer.Error
/// <summary>
/// A viewdef has a non-arithmetic param.
/// </summary>
| NonArithParam of TypedVar
/// <summary>
/// A model has a non-arithmetic variable.
/// </summary>
| NonArithVar of TypedVar
/// <summary>
/// The expression given is not supported in the given position.
/// </summary>
| UnsupportedExpr of VExpr
/// <summary>
/// The expression given is compound, but empty.
/// </summary>
| EmptyCompoundExpr of exptype : string
/// <summary>
/// HSF can't check the given deferred check.
/// </summary>
| CannotCheckDeferred of check : DeferredCheck * why : string
/// <summary>
/// A traversal blew up somewhere.
/// </summary>
| Traversal of err : TraversalError<Error>
/// <summary>
/// Pretty printers for the Horn clause generator.
/// </summary>
/// Pretty-prints HSF translation errors.
module Pretty =
open Starling.Core.Pretty
open Starling.Collections.Func.Pretty
open Starling.Core.Model.Pretty
open Starling.Core.Var.Pretty
open Starling.Core.View.Pretty
open Starling.Core.Model.Pretty
open Starling.Core.Traversal.Pretty
/// <summary>
/// Given an expression and its Doc, potentially wrap the Doc
/// in brackets.
/// </summary>
/// <param name="xe">
/// The expression for which <paramref name="x"/> is a Doc.
/// </param>
/// <param name="x">
/// The document form of <paramref name="xe"/>.
/// </param>
/// <returns>
/// The Doc deriving from potentially bracketing
/// <paramref name="x"/>.
/// </returns>
let maybeBracket (xe : IntExpr<Var>) (x : Doc) : Doc =
match xe with
| SimpleInt -> x
| CompoundInt -> parened x
/// Emits an integral expression in Datalog syntax.
let rec printInt : IntExpr<Var> -> Doc =
function
| IVar c -> String c
| IInt i -> sprintf "%d" i |> String
| IIdx _ -> failwith "unexpected array index"
// Do some reshuffling of n-ary expressions into binary ones.
// These expressions are left-associative, so this should be sound.
| IAdd [] -> failwith "unexpected empty addition"
| IAdd [ x ] -> printInt x
| IAdd [ x; y ] -> printBop "+" x y
| IAdd(x :: y :: xs) -> printInt (IAdd((IAdd [ x; y ]) :: xs))
| ISub [] -> failwith "unexpected empty subtraction"
| ISub [ x ] -> printInt x
| ISub [ x; y ] -> printBop "-" x y
| ISub(x :: y :: xs) -> printInt (ISub((ISub [ x; y ]) :: xs))
| IMul [] -> failwith "unexpected empty multiplication"
| IMul [ x ] -> printInt x
| IMul [ x; y ] -> printBop "*" x y
| IMul(x :: y :: xs) -> printInt (IMul((IMul [ x; y ]) :: xs))
| IDiv(x, y) -> printBop "/" x y
| IMod(x, y) -> failwith "unexpected modulo"
and printBop (op : string) (x : IntExpr<Var>) (y : IntExpr<Var>) =
binop
op
(x |> printInt |> maybeBracket x)
(y |> printInt |> maybeBracket y)
/// Emits a Horn literal.
let rec printLiteral : Literal -> Doc =
function
| Pred p -> printFunc printInt p
| And xs ->
xs
|> Seq.map printLiteral
|> commaSep
|> parened
| Or xs ->
xs
|> Seq.map printLiteral
|> semiSep
|> parened
| ITE (i, t, e) ->
hsep [ printLiteral i
String "->"
printLiteral t
String ";"
printLiteral e ]
|> parened
| True -> String "true"
| False -> String "false"
| Eq(x, y) -> printBop "=" x y
| Neq(x, y) -> printBop "=\=" x y
| Gt(x, y) -> printBop ">" x y
| Ge(x, y) -> printBop ">=" x y
| Le(x, y) -> printBop "=<" x y
| Lt(x, y) -> printBop "<" x y
/// Emits a Horn clause.
let printHorn : Horn -> Doc =
function
| Clause (hd, bd) ->
vsep [ hsep [ printLiteral hd
String ":-" ]
bd |> Seq.map printLiteral |> (fun x -> VSep (x, String ","))
|> Indent
|> (fun x -> hjoin [x; String "."] ) ]
| Comment str -> hsep [ String "%"; String str ]
| QueryNaming {Name = n; Params = ps} ->
hjoin [ String "query_naming"
[ String n
ps |> Seq.map String |> commaSep |> squared
]
|> commaSep |> parened
String "." ]
/// Emits a Horn clause list.
let printHorns (hs : Horn list) : Doc = hs |> List.map printHorn |> vsep
/// <summary>
/// Pretty-prints a HSF backend error.
/// </summary>
/// <param name="err">The error to print.</param>
/// <returns>
/// A <see cref="Doc"/> representing <paramref name="err"/>.
/// </returns>
let rec printError (err : Error) : Doc =
match err with
| InconsistentFunc (func, err) ->
wrapped "view func"
(printMVFunc func)
(Starling.Core.Definer.Pretty.printError err)
| NonArithParam p ->
error
(String "invalid parameter '"
<-> printTypedVar p
<-> String "': HSF only permits integers here")
| NonArithVar p ->
error
(String "invalid variable '"
<-> printTypedVar p
<-> String "': HSF only permits integers here")
| UnsupportedExpr expr ->
error
(String "expression '"
<-> printVExpr expr
<-> String "' is not supported in the HSF backend")
| EmptyCompoundExpr exptype ->
error
(String "found an empty '"
<-> String exptype
<-> String "' expression")
| CannotCheckDeferred (check, why) ->
error
(String "deferred sanity check '"
<-> printDeferredCheck check
<-> String "' failed:"
<+> String why)
| Traversal err -> printTraversalError printError err
(*
* Expression generation
*)
/// <summary>
/// Checks whether an <c>IntExpr</c> is useable in HSF, and converts
/// its variables to string form.
/// </summary>
/// <param name="toVar">
/// Converter from variables in the <c>IntExpr</c> to some unique
/// <c>Var</c> representing the variable. Usually this will be
/// <c>id</c> for <c>VIntExpr</c>s, and <c>unmarkVar</c> for
/// <c>MIntExpr</c>s.
/// </param>
/// <typeparam name="var">
/// The meta-type of variables in the <c>IntExpr</c>.
/// </typeparam>
/// <returns>
/// A function mapping <c>IntExpr</c>s to Chessie-wrapped
/// <c>VIntExpr</c>s.
/// </returns>
let checkArith
(toVar : 'var -> Var)
: IntExpr<'var> -> Result<VIntExpr, Error> =
let rec ca =
function
| IVar c -> c |> toVar |> IVar |> ok
| IInt i -> i |> IInt |> ok
| IAdd [] -> EmptyCompoundExpr "addition" |> fail
| ISub [] -> EmptyCompoundExpr "subtraction" |> fail
| IMul [] -> EmptyCompoundExpr "multiplication" |> fail
| IAdd xs -> xs |> List.map ca |> collect |> lift IAdd
| ISub xs -> xs |> List.map ca |> collect |> lift ISub
| IMul xs -> xs |> List.map ca |> collect |> lift IMul
| IDiv (x, y) -> lift2 (curry IDiv) (ca x) (ca y)
| x ->
(* Need to convert this expression into an Expr<Var> for the
error message, which is somewhat painful and can itself fail! *)
// TODO(CaptainHayashi): subtypes?
let xExpr = Expr.Int (normalRec, x)
let xVarExprR =
liftWithoutContext
(toVar >> ok) (tliftOverCTyped >> tliftOverExpr)
xExpr
bind
(fun xVarExpr -> fail (UnsupportedExpr xVarExpr))
(mapMessages Traversal xVarExprR)
ca
/// <summary>
/// Converts a <c>BoolExpr</c> to a HSF literal.
/// </summary>
/// <param name="toVar">
/// Converter from variables in the <c>BoolExpr</c> to some unique
/// <c>Var</c> representing the variable. Usually this will be
/// <c>id</c> for <c>VBoolExpr</c>s, and <c>unmarkVar</c> for
/// <c>MBoolExpr</c>s.
/// </param>
/// <typeparam name="var">
/// The meta-type of variables in the <c>BoolExpr</c>.
/// </typeparam>
/// <returns>
/// A function mapping <c>BoolExpr</c>s to Chessie-wrapped
/// <c>Literal</c>s.
/// </returns>
let boolExpr
(toVar : 'var -> Var)
: BoolExpr<'var> -> Result<Literal, Error> =
let ca = checkArith toVar
let tca = stripTypeRec >> ca
let rec be =
function
// TODO(CaptainHayashi): are these allowed?
| BAnd xs -> xs |> List.map be |> collect |> lift And
| BOr xs -> xs |> List.map be |> collect |> lift Or
| BTrue -> ok <| True
| BFalse -> ok <| False
// TODO(CaptainHayashi): should we be throwing away int subtypes?
| BEq(Expr.Int (_, x), Expr.Int (_, y)) -> lift2 (curry Eq) (ca x) (ca y)
| BNot(BEq(Expr.Int (_, x), Expr.Int (_, y))) -> lift2 (curry Neq) (ca x) (ca y)
// TODO(CaptainHayashi): is implies allowed natively?
| BImplies(x, y) -> be (mkOr [ mkNot x ; y ])
| BGt(x, y) -> lift2 (curry Gt) (tca x) (tca y)
| BGe(x, y) -> lift2 (curry Ge) (tca x) (tca y)
| BLe(x, y) -> lift2 (curry Le) (tca x) (tca y)
| BLt(x, y) -> lift2 (curry Lt) (tca x) (tca y)
| x ->
let everythingToVar =
liftWithoutContext (toVar >> ok)
(tliftOverCTyped >> tliftOverExpr)
>> mapMessages Traversal
bind (UnsupportedExpr >> fail) (everythingToVar (Bool (normalRec, x)))
be
(*
* Func sanitisation
*)
/// <summary>
/// Tries to convert a marked expression into an unmarked integer
/// expression by mangling the marks into unique names.
/// </summary>
/// <param name="expr">The expression to convert.</param>
/// <returns>
/// If successful, the resulting integer expression.
/// Fails with <see cref="UnsupportedExpr"/> if the expression is
/// Boolean.
/// </returns>
let tryIntExpr (expr : Expr<MarkedVar>) : Result<IntExpr<Var>, Error> =
let mapper =
liftWithoutContext (unmarkVar >> ok)
(tliftOverCTyped >> tliftOverExpr)
let filterExpr =
// TODO(CaptainHayashi): subtypes?
function
| Expr.Int (_, x) -> ok x
| e -> fail (UnsupportedExpr e)
bind filterExpr (mapMessages Traversal (mapper expr))
///<summary>
/// HSF requires variables to start with a capital letter.
/// so we prepend a "V". This is also done in unmarkVar.
/// @mjp41: TODO: We should consider consolidating this.
///</summary>
let makeHSFVar : string -> string = (+) "V"
/// Ensures a param in a viewdef multiset is arithmetic.
let ensureArith : TypedVar -> Result<IntExpr<Var>, Error> =
// TODO(CaptainHayashi): subtypes?
function
| Int (_, x) -> x |> makeHSFVar |> IVar |> ok
| x -> x |> NonArithParam |> fail
/// Constructs a pred from a Func, given a set of active globals,
/// and some validator on the parameters.
let predOfFunc
(parT : 'par -> Result<VIntExpr, Error>)
({ Name = n; Params = pars } : Func<'par>)
: Result<Func<VIntExpr>, Error> =
lift (fun parR -> { Name = n; Params = parR })
(pars |> Seq.map parT |> collect)
(*
* View definitions
*)
/// Generates a query_naming clause for a viewdef.
let queryNaming ({ Name = n ; Params = ps } : DFunc) : Horn =
QueryNaming { Name = n ; Params = List.map valueOf ps }
/// Constructs a full constraint in HSF.
/// The map of active globals should be passed as sharedVars.
/// Some is returned if the constraint is definite; None otherwise.
let hsfModelViewDef
: (DFunc * VBoolExpr option) -> Result<Horn list, Error> =
function
| (vs, Some ex) ->
lift2 (fun hd bdp ->
let bd = Pred bdp
[Clause (hd, [bd]); Clause (bd, [hd])])
(boolExpr makeHSFVar ex)
(predOfFunc ensureArith vs)
|> lift (fun c -> queryNaming vs :: c)
| (vs, None) -> ok [ queryNaming vs ]
(*
* Variables
*)
/// <summary>
/// Generates the Horn uninterpreted function for emp.
/// </summary>
/// <param name="svars">The shared vars used as parameters to emp.</param>
/// <returns>
/// If successful, the Horn uninterpreted function for emp.
/// </returns>
let predOfEmp (svars : VarMap) : Result<Func<VIntExpr>, Error> =
let svarSeq = VarMap.toTypedVarSeq svars
(* emp is parameterised by the entire shared state, but nothing else.
We can't make the predicate if any of those variables are non-integer. *)
let empParamsR =
collect
(Seq.map
// TODO(CaptainHayashi): subtypes?
(function
| Int (_, name) -> ok (IVar (makeHSFVar name))
| var -> fail (NonArithVar var))
svarSeq)
bind (fun empParams -> predOfFunc ok { Name = "emp"; Params = empParams })
empParamsR
/// Constructs a Horn clause for initialising an integer variable.
/// Returns an error if the variable is not an integer.
/// Returns no clause if the variable is not initialised.
/// Takes the environment of active global variables.
let hsfModelVariables (svars : VarMap) : Result<Horn, Error> =
// TODO(CaptainHayashi): actually get these initialisations from
// somewhere instead of assuming everything to be 0L.
lift
(fun hd ->
let vps = hd.Params
Clause(Pred hd, List.map (fun n -> Eq (n, IInt 0L)) vps ))
(predOfEmp svars)
(*
* Terms
*)
/// Converts a top-level Boolean expression to a list of Horn literals.
let topLevelExpr : BoolExpr<MarkedVar> -> Result<Literal list, Error> =
// The main difference here is that we model conjunctions directly as a
// Horn literal list.
function
| BAnd xs -> xs
| x -> [x]
>> List.map (boolExpr unmarkVar)
>> collect
>> lift List.ofSeq
/// Generates an if-then-else, collapsing automatically in the case of true or false.
let ite (i : Literal) (t : Literal) (e : Literal) : Literal =
match i with
| True -> t
| False -> e
| _ -> ITE(i,t,e)
/// Constructs a Horn literal for a Func.
let hsfFunc
(definer : FuncDefiner<BoolExpr<Var> option>)
(func : MVFunc)
: Result<Literal option, Error> =
// We check the defining views here, because anything not in the
// defining views is to be held true.
// Now that we're at the func level, finding the view is easy!
definer
|> (FuncDefiner.lookup func >> mapMessages (curry InconsistentFunc func))
|> bind (function
| Some df -> lift (Pred >> Some) (predOfFunc tryIntExpr func)
| None -> ok None)
/// Constructs a Horn literal for a GFunc.
let hsfGFunc
(definer : FuncDefiner<BoolExpr<Var> option>)
({ Cond = c; Item = ms } : GFunc<MarkedVar>)
: Result<Literal option, Error> =
hsfFunc definer ms
|> (lift2 (fun cR -> Option.map (fun m -> ite cR m True))
(boolExpr unmarkVar c))
/// Constructs the body for a set of condition pair Horn clauses,
/// given the defining views, preconditions and semantics clause.
let hsfConditionBody
(definer : FuncDefiner<BoolExpr<Var> option>)
(weakestPre : GView<MarkedVar>)
(command : MBoolExpr)
: Result<Literal list, Error> =
let weakestPreH =
weakestPre
|> Multiset.toFlatSeq
|> Seq.map (hsfGFunc definer)
|> collect
|> lift (Seq.choose id >> List.ofSeq)
let commandH = topLevelExpr command
lift2 List.append weakestPreH commandH
/// Constructs a series of Horn clauses for a term.
/// Takes the environment of active global variables.
let hsfTerm
(definer : FuncDefiner<BoolExpr<Var> option>)
(name : string,
{Cmd = c; WPre = w ; Goal = g}
: CmdTerm<MBoolExpr, GView<MarkedVar>, MVFunc>)
: Result<Horn list, Error> =
lift2 (fun head body ->
[ Comment (sprintf "term %s" name)
Clause (Option.get head, body) ])
(hsfFunc definer g)
(hsfConditionBody definer w c.Semantics) // TODO: keep around Command?
/// <summary>
/// Given the name of an iterator, map a function over the parameter in a
/// func that represents that iterator.
/// </summary>
/// <param name="iterator">The name of the iterator to transform.<param>
/// <param name="f">The function mapping the iterator to an expression.</param>
/// <param name="func">
/// The func in which <paramref name="iterator"/> is a parameter.
/// </param>
/// <returns>
/// <paramref name="func"/>, with the iterator transformed by
/// <paramref name="f"/>.
/// </returns>
let mapIteratorParam
(iterator : Var) (f : Var -> IntExpr<Var>) (func : Func<IntExpr<Var>>)
: Func<IntExpr<Var>> =
(* We don't check that the iterator is only in there once, and instead just
map over each ocurrence. This should be sound by construction. *)
let fOnIter param =
match param with
| IVar var when var = iterator -> f var
| x -> x
{ func with Params = List.map fOnIter func.Params }
/// <summary>
/// Constructs a Horn clause for a base downclosure check on a given func.
/// </summary>
let hsfModelBaseDownclosure
(svars : VarMap) (func : IteratedDFunc)
(defn : BoolExpr<Sym<Var>> option)
(reason : string)
: Result<Horn list, Error> =
// TODO(CaptainHayashi): proper doc comment.
let svarSeq = VarMap.toTypedVarSeq svars
(* TODO(CaptainHayashi): We're given the func needing downclosure in
unflattened form. This is kind-of messy, as we now have to flatten
it again. *)
let flatFunc = Starling.Flattener.flattenDView svarSeq [func]
let funcPredR = predOfFunc ensureArith flatFunc
// TODO(CaptainHayashi): lots of duplication here.
let iterator = func.Iterator
let iterVarR =
// TODO(CaptainHayashi): subtypes?
match iterator with
| Some (Int (_, x)) -> ok x
| _ ->
fail
(CannotCheckDeferred
(NeedsBaseDownclosure (func, defn, reason), "malformed iterator"))
(* Base downclosure for a view V[n](x):
D(emp) => D(V[0](x))
That is, the definition of V when the iterator is 0 can be no
stricter than the definition of emp.
In the following, `funcPredZeroR` models V[0](x) by transforming
the iterator from n to 0 in `funcPredR`, and 'empPredR' models emp. *)
let funcPredZeroR =
lift2
(fun it pred -> mapIteratorParam it (fun _ -> IInt 0L) pred)
iterVarR
funcPredR
let empPredR = predOfEmp svars
// The above can be modelled as the Horn clause funcPredZero :- empPred.
let hornR =
lift2
(fun funcPredZero empPred ->
Clause (Pred funcPredZero, [Pred empPred]))
funcPredZeroR
empPredR
// We then add a comment to help show where this came from.
lift
(fun h ->
[ Comment
(sprintf "base downclosure on %s: %s" func.Func.Name reason)
h ])
hornR
/// <summary>
/// Constructs a Horn clause for an inductive downclosure check on a given
/// func.
/// </summary>
let hsfModelInductiveDownclosure
(svars : VarMap) (func : IteratedDFunc) (defn : BoolExpr<Sym<Var>> option) (reason : string)
: Result<Horn list, Error> =
// TODO(CaptainHayashi): proper doc comment.
let svarSeq = VarMap.toTypedVarSeq svars
// See hsfModelBaseDownclosure for caveats.
let flatFunc = Starling.Flattener.flattenDView svarSeq [func]
let funcPredR = predOfFunc ensureArith flatFunc
let iterator = func.Iterator
let iterVarR =
// TODO(CaptainHayashi): subtypes?
match iterator with
| Some (Int (_, x)) -> ok x
| _ ->
fail
(CannotCheckDeferred
(NeedsInductiveDownclosure (func, defn, reason),
"malformed iterator"))
(* Inductive downclosure for a view V[n](x):
(0 <= n) => (D(V[n+1](x)) => D(V[n](x)))
That is, the definition of V when the iterator is n+1 implies the
definition of V when the iterator is n, for all positive n.
In the following, `funcPredSuccR` models V[n+1](x) by transforming
the iterator from n to n+1 in `funcPredR`. *)
let funcPredSuccR =
lift2
(fun it pred -> mapIteratorParam it incVar pred)
iterVarR
funcPredR
(* The above can be modelled as the Horn clause
funcPredR :- n > 0, funcPredSuccR.
(We flatten the nested implication into a conjunction.) *)
let hornR =
lift3
(fun it succ norm ->
Clause (Pred norm, [Ge (IVar it, IInt 0L); Pred succ]))
iterVarR
funcPredSuccR
funcPredR
// As with base DC, comment to show where this clause originated.
lift
(fun h ->
[ Comment (sprintf "ind downclosure on %s: %s" func.Func.Name reason)
h ])
hornR
/// <summary>
/// Constructs a Horn clause for a deferred check, if possible.
/// </summary>
let hsfModelDeferredCheck (svars : VarMap) (check : DeferredCheck)
: Result<Horn list, Error> =
match check with
| NeedsBaseDownclosure (func, defn, reason) ->
hsfModelBaseDownclosure svars func defn reason
| NeedsInductiveDownclosure (func, defn, reason) ->
hsfModelInductiveDownclosure svars func defn reason
/// Constructs a HSF script for a model.
let hsfModel
({ SharedVars = svars; ViewDefs = definer; Axioms = xs; DeferredChecks = ds }
: Model<CmdTerm<MBoolExpr, GView<MarkedVar>, MVFunc>,
FuncDefiner<BoolExpr<Var> option>>)
: Result<Horn list, Error> =
// This is complicated so as to preserve order.
let uniquify hs =
let f seenSoFar horn =
match horn with
| Clause (_) as c ->
if (Set.contains c seenSoFar)
then (seenSoFar, Comment "(duplicate clause)")
else (Set.add c seenSoFar, c)
| l -> (seenSoFar, l)
snd (mapAccumL f Set.empty hs)
let collectMap f = Seq.map f >> collect
trial {
let! varHorn = hsfModelVariables svars
let! dcHorns =
lift
(List.concat >> uniquify)
(collectMap (hsfModelDeferredCheck svars) ds)
let! defHorns =
definer
|> FuncDefiner.toSeq
|> collectMap hsfModelViewDef
|> lift (List.concat >> uniquify)
let! axHorns =
xs
|> Map.toSeq
|> collectMap (hsfTerm definer)
|> lift (List.concat >> uniquify)
return varHorn :: List.concat [ defHorns; axHorns; dcHorns ]
}