-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathZ3.fs
177 lines (159 loc) · 6.82 KB
/
Z3.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/// <summary>
/// Expression translation and runners for Z3.
/// </summary>
module Starling.Core.Z3
open Microsoft
open Starling.Core.Expr
open Starling.Core.TypeSystem
/// <summary>
/// Pretty printers for the Z3 types.
/// </summary>
module Pretty =
open Starling.Core.Pretty
/// Pretty-prints Z3 expressions.
let printZ3Exp (expr : #Z3.Expr) = String(expr.ToString())
/// Pretty-prints a satisfiability result.
let printSat (sat : Z3.Status) : Doc =
match sat with
(* Remember: we're trying to _refute_ the proof term with Z3.
Thus, sat is what we're trying to _avoid_ here. *)
| Z3.Status.SATISFIABLE -> error (String "fail")
| Z3.Status.UNSATISFIABLE -> success (String "success")
| _ -> inconclusive (String "unknown")
/// <summary>
/// Functions for translating Starling expressions into Z3.
/// </summary>
module Expr =
/// <summary>
/// Converts a type into a Z3 sort.
/// </summary>
/// <param name="reals">
/// Whether to use Real instead of Int for integers.
/// </param>
/// <param name="ctx">The Z3 context to use to generate the sorts.</param>
/// <param name="ty">The type to convert to a sort.</param>
/// <returns>
/// The Z3 sort corresponding to <paramref name="ty"/>.
/// </returns>
let rec typeToSort (reals : bool) (ctx : Z3.Context) (ty : Type) : Z3.Sort =
match ty with
| AnInt when reals -> ctx.MkRealSort () :> Z3.Sort
| AnInt -> ctx.MkIntSort () :> Z3.Sort
| ABool -> ctx.MkBoolSort () :> Z3.Sort
| AnArray (eltype, _) ->
let elZ3 = typeToSort reals ctx eltype
ctx.MkArraySort (range = ctx.MkIntSort (), domain = elZ3) :> Z3.Sort
/// Converts a Starling arithmetic expression to a Z3 ArithExpr.
let rec intToZ3
(reals : bool)
(toStr : 'Var -> string)
(ctx : Z3.Context)
(int : TypedIntExpr<'Var>) : Z3.ArithExpr =
let rec iz =
function
| IVar c when reals -> c |> toStr |> ctx.MkRealConst :> Z3.ArithExpr
| IVar c -> c |> toStr |> ctx.MkIntConst :> Z3.ArithExpr
| IIdx (arr, idx) ->
// TODO(CaptainHayashi): ensure eltype is Int?
let arrZ3 = arrayToZ3 reals toStr ctx arr
let idxZ3 = intToZ3 reals toStr ctx (mkTypedSub normalRec idx)
// TODO(CaptainHayashi): make this not crash if the select is not an ArithExpr.
ctx.MkSelect (arrZ3, idxZ3) :?> Z3.ArithExpr
| IInt i when reals -> (i |> ctx.MkReal) :> Z3.ArithExpr
| IInt i -> (i |> ctx.MkInt) :> Z3.ArithExpr
| IAdd xs -> ctx.MkAdd (xs |> Seq.map iz |> Seq.toArray)
| ISub xs -> ctx.MkSub (xs |> Seq.map iz |> Seq.toArray)
| IMul xs -> ctx.MkMul (xs |> Seq.map iz |> Seq.toArray)
| IDiv (x, y) -> ctx.MkDiv (iz x, iz y)
// TODO(CaptainHayashi): refuse AMod when reals is true.
| IMod (x, y) -> ctx.MkMod (iz x :?> Z3.IntExpr, iz y :?> Z3.IntExpr) :> Z3.ArithExpr
iz (stripTypeRec int)
/// Converts a Starling Boolean expression to a Z3 ArithExpr.
and boolToZ3
(reals : bool)
(toStr : 'Var -> string)
(ctx: Z3.Context)
(bool : TypedBoolExpr<'Var>) : Z3.BoolExpr =
let iz x = intToZ3 reals toStr ctx x
let ez = exprToZ3 reals toStr ctx
let rec bz =
function
| BVar c -> c |> toStr |> ctx.MkBoolConst
| BIdx (arr, idx) ->
// TODO(CaptainHayashi): ensure eltype is Bool?
let arrZ3 = arrayToZ3 reals toStr ctx arr
let idxZ3 = intToZ3 reals toStr ctx (mkTypedSub normalRec idx)
// TODO(CaptainHayashi): make this not crash if the select is not a BoolExpr.
ctx.MkSelect (arrZ3, idxZ3) :?> Z3.BoolExpr
| BTrue -> ctx.MkTrue ()
| BFalse -> ctx.MkFalse ()
| BAnd xs -> ctx.MkAnd (xs |> Seq.map bz |> Seq.toArray)
| BOr xs -> ctx.MkOr (xs |> Seq.map bz |> Seq.toArray)
| BImplies (x, y) -> ctx.MkImplies (bz x, bz y)
| BEq (x, y) -> ctx.MkEq (ez x, ez y)
| BGt (x, y) -> ctx.MkGt (iz x, iz y)
| BGe (x, y) -> ctx.MkGe (iz x, iz y)
| BLe (x, y) -> ctx.MkLe (iz x, iz y)
| BLt (x, y) -> ctx.MkLt (iz x, iz y)
| BNot x -> x |> bz |> ctx.MkNot
bz (stripTypeRec bool)
/// Converts a Starling array expression to a Z3 Expr.
and arrayToZ3
(reals : bool)
(toStr : 'Var -> string)
(ctx: Z3.Context)
(arr : TypedArrayExpr<'Var>)
: Z3.ArrayExpr =
let eltype = arr.SRec.ElementType
match stripTypeRec arr with
| AVar c ->
ctx.MkArrayConst
(name = toStr c,
domain = ctx.MkIntSort (),
range = typeToSort reals ctx eltype)
| AIdx (arr', idx) ->
// TODO(CaptainHayashi): ensure eltype is Array?
let arrZ3 = arrayToZ3 reals toStr ctx arr'
let idxZ3 = intToZ3 reals toStr ctx (mkTypedSub normalRec idx)
// TODO(CaptainHayashi): make this not crash if the select is not an ArrayExpr.
ctx.MkSelect (arrZ3, idxZ3) :?> Z3.ArrayExpr
| AUpd (arr', idx, upd) ->
let arrZ3 = arrayToZ3 reals toStr ctx (updateTypedSub arr arr')
let idxZ3 = intToZ3 reals toStr ctx (mkTypedSub normalRec idx)
let updZ3 = exprToZ3 reals toStr ctx upd
ctx.MkStore (arrZ3, idxZ3, updZ3)
/// Converts a Starling expression to a Z3 Expr.
and exprToZ3
(reals : bool)
(toStr : 'Var -> string)
(ctx: Z3.Context)
(expr : Expr<'Var>)
: Z3.Expr =
match expr with
| Expr.Bool (t, b) -> boolToZ3 reals toStr ctx (mkTypedSub t b) :> Z3.Expr
| Expr.Int (t, i) -> intToZ3 reals toStr ctx (mkTypedSub t i) :> Z3.Expr
| Expr.Array (t, a) -> arrayToZ3 reals toStr ctx (mkTypedSub t a) :> Z3.Expr
/// <summary>
/// Z3 tests for expressions.
/// </summary>
module Tests =
// TODO(CaptainHayashi): move this to a separate module.
open NUnit.Framework
open Starling.Utils.Testing
[<Test>]
let ``modulo expressions are translated correctly when reals is disabled`` () =
use ctx = new Z3.Context ()
assertEqual
(ctx.MkMod (ctx.MkIntConst "foo", ctx.MkInt 5L) :> Z3.ArithExpr)
(intToZ3 false id ctx (normalInt (mkMod (IVar "foo") (IInt 5L))))
/// <summary>
/// Z3 invocation.
/// </summary>
module Run =
/// <summary>
/// Runs Z3 on a single Boolean Z3 expression.
/// </summary>
let runTerm (ctx: Z3.Context) term =
let solver = ctx.MkSimpleSolver()
solver.Assert [| term |]
solver.Check [||]