forked from aaronbloomfield/pdr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathavltree.cpp
348 lines (311 loc) · 7.77 KB
/
avltree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
/* avltree.cpp */
/**
* Implements an unbalanced Avl search tree.
* Note that all "matching" is based on the compares method.
* @author Mark Allen Weiss
*/
/**
* Construct the tree.
*/
#include "avltree.h"
AvlTree::AvlTree( const string & notFound )
: ITEM_NOT_FOUND( notFound ), root( NULL ) {
SingleRotations = 0;
DoubleRotations = 0;
RightLinksFollowed = 0;
LeftLinksFollowed = 0;
num_nodes = 0;
}
/**
* Copy constructor.
*/
AvlTree::AvlTree( const AvlTree & rhs )
: ITEM_NOT_FOUND( rhs.ITEM_NOT_FOUND ), root( NULL ) {
*this = rhs;
}
/**
* Destructor for the tree.
*/
AvlTree::~AvlTree( ) {
makeEmpty( );
}
/**
* Returns the number of left links follwed so far in the tree.
*/
int AvlTree::GetLeftLinksFollowed( ) const {
return LeftLinksFollowed;
}
/**
* Returns the number of DoubleRotations so far in the tree.
*/
int AvlTree::GetDoubleRotations( ) const {
return DoubleRotations;
}
/**
* Returns the number of SingleRotations so far in the tree.
*/
int AvlTree::GetSingleRotations( ) const {
return SingleRotations;
}
/**
* Returns the number of right links follwed so far in the tree.
*/
int AvlTree::GetRightLinksFollowed( ) const {
return RightLinksFollowed;
}
/**
* Returns the cardinality (number of nodes) in the tree.
*/
int AvlTree::card_of( ) const {
return num_nodes;
}
/**
* Insert x into the tree; duplicates are ignored.
*/
void AvlTree::insert( const string & x ) {
insert( x, root );
}
/**
* Remove x from the tree. Nothing is done if x is not found.
*/
void AvlTree::remove( const string & x ) {
cout << "Sorry, remove unimplemented; " << x <<
" still present" << endl;
}
/**
* Find the smallest item in the tree.
* Return smallest item or ITEM_NOT_FOUND if empty.
*/
const string & AvlTree::findMin( ) const {
return elementAt( findMin( root ) );
}
/**
* Find the largest item in the tree.
* Return the largest item of ITEM_NOT_FOUND if empty.
*/
const string & AvlTree::findMax( ) const {
return elementAt( findMax( root ) );
}
/**
* Find item x in the tree.
* Return the matching item or ITEM_NOT_FOUND if not found.
*/
const string & AvlTree::
find( const string & x ) const {
return elementAt( find( x, root ) );
}
/**
* Make the tree logically empty.
*/
void AvlTree::makeEmpty( ) {
makeEmpty( root );
}
/**
* Test if the tree is logically empty.
* Return true if empty, false otherwise.
*/
bool AvlTree::isEmpty( ) const {
return root == NULL;
}
/**
* Print the tree contents in sorted order.
*/
void AvlTree::printTree( ) const {
if ( isEmpty( ) )
cout << "Empty tree" << endl;
else
printTree( root );
}
/**
* Deep copy.
*/
const AvlTree &
AvlTree::
operator=( const AvlTree & rhs ) {
if ( this != &rhs ) {
makeEmpty( );
root = clone( rhs.root );
}
return *this;
}
double AvlTree::exp_path_length( )
/*
** Calculate the expected path length of the tree
** This is the public version, without a parameter.
*/
{
// YOUR CODE HERE
return -99.0; // stub, remove after writing your code
}
int AvlTree::int_path_length(AvlNode *t, int depth) {
return 0; // put your actual return value here when you write this function
}
/**
* Internal method to get element field in node t.
* Return the element field or ITEM_NOT_FOUND if t is NULL.
*/
const string & AvlTree::elementAt( AvlNode *t ) const {
return t == NULL ? ITEM_NOT_FOUND : t->element;
}
/**
* Internal method to insert into a subtree.
* x is the item to insert.
* t is the node that roots the tree.
*/
void AvlTree::insert( const string & x, AvlNode * & t ) const {
if ( t == NULL ) {
t = new AvlNode( x, NULL, NULL );
} else if ( x < t->element ) {
insert( x, t->left );
if ( height( t->left ) - height( t->right ) == 2 ) {
if ( x < t->left->element ) {
rotateWithLeftChild( t );
} else {
doubleWithLeftChild( t );
}
}
} else if ( t->element < x ) {
insert( x, t->right );
if ( height( t->right ) - height( t->left ) == 2 ) {
if ( t->right->element < x ) {
rotateWithRightChild( t );
} else {
doubleWithRightChild( t );
}
}
} else
; // Duplicate; do nothing
t->height = max( height( t->left ), height( t->right ) ) + 1;
}
/**
* Internal method to find the smallest item in a subtree t.
* Return node containing the smallest item.
*/
AvlNode *
AvlTree::findMin( AvlNode *t ) const {
if ( t == NULL)
return t;
while ( t->left != NULL )
t = t->left;
return t;
}
/**
* Internal method to find the largest item in a subtree t.
* Return node containing the largest item.
*/
AvlNode *
AvlTree::findMax( AvlNode *t ) const {
if ( t == NULL )
return t;
while ( t->right != NULL )
t = t->right;
return t;
}
/**
* Internal method to find an item in a subtree.
* x is item to search for.
* t is the node that roots the tree.
* Return node containing the matched item.
*/
AvlNode *
AvlTree::find( const string & x, AvlNode *t ) const {
while ( t != NULL )
if ( x < t->element ) {
t = t->left;
} else if ( t->element < x ) {
t = t->right;
} else
return t; // Match
return NULL; // No match
}
/**
* Internal method to make subtree empty.
*/
void AvlTree::makeEmpty( AvlNode * & t ) const {
if ( t != NULL ) {
makeEmpty( t->left );
makeEmpty( t->right );
delete t;
}
t = NULL;
}
/**
* Internal method to clone subtree.
*/
AvlNode *
AvlTree::clone( AvlNode * t ) const {
if ( t == NULL )
return NULL;
else
return new AvlNode( t->element, clone( t->left ),
clone( t->right ), t->height );
}
/**
* Return the height of node t or -1 if NULL.
*/
int AvlTree::height( AvlNode *t ) const {
return t == NULL ? -1 : t->height;
}
/**
* Return maximum of lhs and rhs.
*/
int AvlTree::max( int lhs, int rhs ) const {
return lhs > rhs ? lhs : rhs;
}
/**
* Rotate binary tree node with left child.
* For AVL trees, this is a single rotation for case 1.
* Update heights, then set new root.
*/
void AvlTree::rotateWithLeftChild( AvlNode * & k2 ) const {
AvlNode *k1 = k2->left;
k2->left = k1->right;
k1->right = k2;
k2->height = max( height( k2->left ), height( k2->right ) ) + 1;
k1->height = max( height( k1->left ), k2->height ) + 1;
k2 = k1;
}
/**
* Rotate binary tree node with right child.
* For AVL trees, this is a single rotation for case 4.
* Update heights, then set new root.
*/
void AvlTree::rotateWithRightChild( AvlNode * & k1 ) const {
AvlNode * k2 = k1->right;
k1->right = k2->left;
k2->left = k1;
k1->height = max( height( k1->left ), height( k1->right ) ) + 1;
k2->height = max( height( k2->right ), k1->height ) + 1;
k1 = k2;
}
/**
* Double rotate binary tree node: first left child.
* with its right child; then node k3 with new left child.
* For AVL trees, this is a double rotation for case 2.
* Update heights, then set new root.
*/
void AvlTree::doubleWithLeftChild( AvlNode * & k3 ) const {
rotateWithRightChild( k3->left );
rotateWithLeftChild( k3 );
}
/**
* Double rotate binary tree node: first right child.
* with its left child; then node k1 with new right child.
* For AVL trees, this is a double rotation for case 3.
* Update heights, then set new root.
*/
void AvlTree::doubleWithRightChild( AvlNode * & k1 ) const {
rotateWithLeftChild( k1->right );
rotateWithRightChild( k1 );
}
/**
* Internal method to print a subtree in sorted order.
* t points to the node that roots the tree.
*/
void AvlTree::printTree( AvlNode *t ) const {
if ( t != NULL ) {
printTree( t->left );
cout << t->element << endl;
printTree( t->right );
}
}