-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
66 lines (48 loc) · 1.76 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import argparse
from omegaconf import OmegaConf
from pytorch_lightning.trainer import Trainer
from utils.util import instantiate_from_config
def get_parser(**parser_kwargs):
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help='path to base configs. Loaded from left-to-right. '
'Parameters can be oeverwritten or added with command-line options of the form "--key value".',
default=list(),
)
parser.add_argument(
'--epoch',
nargs='?',
type=int,
default=100,
)
parser.add_argument(
'--batch_size',
nargs='?',
type=int,
default=1,
)
return parser
def main():
parsers = get_parser()
parsers = Trainer.add_argparse_args(parsers)
opt, unknown = parsers.parse_known_args()
# init and save configs
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
# datamodule
datamodule = instantiate_from_config(config.data)
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
# calling these ourselves should not be necessary but it is.
# lightning still takes care of proper multiprocessing though
model = instantiate_from_config(config.module)
logger = instantiate_from_config(config.logger)
checkpoint_callbacks = [instantiate_from_config(config.checkpoints[cfg]) for cfg in config.checkpoints]
trainer = Trainer(accelerator='gpu', max_epochs=opt.epoch, logger=logger, callbacks=checkpoint_callbacks)
trainer.fit(model=model, datamodule=datamodule)
if __name__ == '__main__':
main()