forked from OpenMDAO/CADRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_mdp.py
161 lines (136 loc) · 5.59 KB
/
example_mdp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
""" Optimization of the CADRE MDP."""
from __future__ import print_function
from six.moves import range
import numpy as np
from openmdao.core.mpi_wrap import MPI
from openmdao.core.problem import Problem
from openmdao.drivers.pyoptsparse_driver import pyOptSparseDriver
try:
from openmdao.core.petsc_impl import PetscImpl as impl
except ImportError:
impl = None
from openmdao.solvers.ln_gauss_seidel import LinearGaussSeidel
from openmdao.solvers.petsc_ksp import PetscKSP
from CADRE.CADRE_mdp import CADRE_MDP_Group
# These numbers are for the CADRE problem in the paper.
n = 1500
m = 300
npts = 6
restart = False
# These numbers are for quick testing
#n = 150
#m = 6
#npts = 2
# Instantiate
model = Problem(impl=impl)
root = model.root = CADRE_MDP_Group(n=n, m=m, npts=npts)
# add SNOPT driver
model.driver = pyOptSparseDriver()
model.driver.options['optimizer'] = "SNOPT"
model.driver.opt_settings = {'Major optimality tolerance': 1e-3,
'Major feasibility tolerance': 1.0e-5,
'Iterations limit': 500000000,
"New basis file": 10}
# Restart File
if restart is True and os.path.exists("fort.10"):
model.driver.opt_settings["Old basis file"] = 10
# Add parameters and constraints to each CADRE instance.
names = ['pt%s' % i for i in range(npts)]
for i, name in enumerate(names):
# add parameters to driver
model.driver.add_desvar("%s.CP_Isetpt" % name, low=0., high=0.4)
model.driver.add_desvar("%s.CP_gamma" % name, low=0, high=np.pi/2.)
model.driver.add_desvar("%s.CP_P_comm" % name, low=0., high=25.)
model.driver.add_desvar("%s.iSOC" % name, indices=[0], low=0.2, high=1.)
model.driver.add_constraint('%s.ConCh'% name, upper=0.0)
model.driver.add_constraint('%s.ConDs'% name, upper=0.0)
model.driver.add_constraint('%s.ConS0'% name, upper=0.0)
model.driver.add_constraint('%s.ConS1'% name, upper=0.0)
model.driver.add_constraint('%s_con5.val'% name, equals=0.0)
# Add Parameter groups
model.driver.add_desvar("bp1.cellInstd", low=0., high=1.0)
model.driver.add_desvar("bp2.finAngle", low=0., high=np.pi/2.)
model.driver.add_desvar("bp3.antAngle", low=-np.pi/4, high=np.pi/4)
# Add objective
model.driver.add_objective('obj.val')
# For Parallel exeuction, we must use KSP or LinearGS
#model.root.ln_solver = PetscKSP()
model.root.ln_solver = LinearGaussSeidel()
model.root.parallel.ln_solver = LinearGaussSeidel()
model.root.parallel.pt0.ln_solver = LinearGaussSeidel()
model.root.parallel.pt1.ln_solver = LinearGaussSeidel()
model.root.parallel.pt2.ln_solver = LinearGaussSeidel()
model.root.parallel.pt3.ln_solver = LinearGaussSeidel()
model.root.parallel.pt4.ln_solver = LinearGaussSeidel()
model.root.parallel.pt5.ln_solver = LinearGaussSeidel()
# Parallel Derivative calculation
#for con_name in ['.ConCh','.ConDs','.ConS0','.ConS1','_con5.val']:
# model.driver.parallel_derivs(['%s%s'%(n,con_name) for n in names])
# Recording
# Some constraints only exit on one process so cannot record everything
recording_includes_options = ['obj.val']
for j in range(npts):
recording_includes_options.append('pt%s.ConCh' % str(j))
recording_includes_options.append('pt%s.ConDs' % str(j))
recording_includes_options.append('pt%s.ConS0' % str(j))
recording_includes_options.append('pt%s.ConS1' % str(j))
recording_includes_options.append('pt%s_con5.val' % str(j))
#from openmdao.recorders import DumpRecorder
#rec = DumpRecorder(out='data.dmp')
#model.driver.add_recorder(rec)
#rec.options['includes'] = recording_includes_options
from openmdao.recorders.sqlite_recorder import SqliteRecorder
rec = SqliteRecorder(out='data.sql')
model.driver.add_recorder(rec)
rec.options['includes'] = recording_includes_options
model.setup()
model.run()
import resource
print("Memory Usage:", resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1000.0, "MB (on unix)")
#----------------------------------------------------------------
# Below this line, code I was using for verifying and profiling.
#----------------------------------------------------------------
#profile = False
#params = model.driver.get_desvars().keys()
#unks = model.driver.get_objectives().keys() + model.driver.get_constraints().keys()
#if profile is True:
# import cProfile
# import pstats
# def zzz():
# for j in range(1):
# model.run()
# cProfile.run("model.calc_gradient(params, unks, mode='rev', return_format='dict')", 'profout')
# #cProfile.run("zzz()", 'profout')
# p = pstats.Stats('profout')
# p.strip_dirs()
# p.sort_stats('cumulative', 'time')
# p.print_stats()
# print('\n\n---------------------\n\n')
# p.print_callers()
# print('\n\n---------------------\n\n')
# p.print_callees()
#else:
# #model.check_total_derivatives()
# Ja = model.calc_gradient(params, unks, mode='rev', return_format='dict')
# for key1, value in sorted(Ja.items()):
# for key2 in sorted(value.keys()):
# print(key1, key2)
# print(value[key2])
# #print(Ja)
# #Jf = model.calc_gradient(params, unks, mode='fwd', return_format='dict')
# #print(Jf)
# #Jf = model.calc_gradient(params, unks, mode='fd', return_format='dict')
# #print(Jf)
# import pickle
# pickle.dump(Ja, open( "mdp_derivs.p", "wb" ))
#
#import pickle
#data = {}
#varlist = []
#picklevars = ['obj.val',
#'pt0_con1.val', 'pt0_con2.val', 'pt0_con3.val', 'pt0_con4.val', 'pt0_con5.val',
#'pt1_con1.val', 'pt1_con2.val', 'pt1_con3.val', 'pt1_con4.val', 'pt1_con5.val',
#]
#for var in picklevars:
#data[var] = model[var]
#pickle.dump(data, open( "mdp_execute.p", "wb" ))