forked from OpenMDAO/CADRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_run.py
163 lines (138 loc) · 5.7 KB
/
single_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
""" Optimization of the CADRE MDP."""
from __future__ import print_function
from six.moves import range
import numpy as np
from openmdao.core.mpi_wrap import MPI
from openmdao.core.problem import Problem
#from openmdao.drivers.pyoptsparse_driver import pyOptSparseDriver
try:
from openmdao.core.petsc_impl import PetscImpl as impl
except ImportError:
impl = None
from openmdao.solvers.ln_gauss_seidel import LinearGaussSeidel
from openmdao.solvers.petsc_ksp import PetscKSP
from CADRE.CADRE_mdp import CADRE_MDP_Group
# These numbers are for the CADRE problem in the paper.
n = 1500
m = 300
npts = 6
restart = False
# These numbers are for quick testing
#n = 150
#m = 6
#npts = 2
# Instantiate
model = Problem(impl=impl)
root = model.root = CADRE_MDP_Group(n=n, m=m, npts=npts)
# add SNOPT driver
#model.driver = pyOptSparseDriver()
#model.driver.options['optimizer'] = "SNOPT"
#model.driver.opt_settings = {'Major optimality tolerance': 1e-3,
# 'Major feasibility tolerance': 1.0e-5,
# 'Iterations limit': 500000000,
# "New basis file": 10}
# Restart File
#if restart is True and os.path.exists("fort.10"):
# model.driver.opt_settings["Old basis file"] = 10
# Add parameters and constraints to each CADRE instance.
#names = ['pt%s' % i for i in range(npts)]
#for i, name in enumerate(names):
# add parameters to driver
# model.driver.add_desvar("%s.CP_Isetpt" % name, low=0., high=0.4)
# model.driver.add_desvar("%s.CP_gamma" % name, low=0, high=np.pi/2.)
# model.driver.add_desvar("%s.CP_P_comm" % name, low=0., high=25.)
#model.driver.add_desvar("%s.iSOC" % name, indices=[0], low=0.2, high=1.)
# model.driver.add_constraint('%s.ConCh'% name, upper=0.0)
# model.driver.add_constraint('%s.ConDs'% name, upper=0.0)
# model.driver.add_constraint('%s.ConS0'% name, upper=0.0)
# model.driver.add_constraint('%s.ConS1'% name, upper=0.0)
# model.driver.add_constraint('%s_con5.val'% name, equals=0.0)
# Add Parameter groups
#model.driver.add_desvar("bp1.cellInstd", low=0., high=1.0)
#model.driver.add_desvar("bp2.finAngle", low=0., high=np.pi/2.)
#model.driver.add_desvar("bp3.antAngle", low=-np.pi/4, high=np.pi/4)
# Add objective
model.driver.add_objective('obj.val')
# For Parallel exeuction, we must use KSP or LinearGS
#model.root.ln_solver = PetscKSP()
model.root.ln_solver = LinearGaussSeidel()
model.root.parallel.ln_solver = LinearGaussSeidel()
model.root.parallel.pt0.ln_solver = LinearGaussSeidel()
model.root.parallel.pt1.ln_solver = LinearGaussSeidel()
model.root.parallel.pt2.ln_solver = LinearGaussSeidel()
model.root.parallel.pt3.ln_solver = LinearGaussSeidel()
model.root.parallel.pt4.ln_solver = LinearGaussSeidel()
model.root.parallel.pt5.ln_solver = LinearGaussSeidel()
# Parallel Derivative calculation
#for con_name in ['.ConCh','.ConDs','.ConS0','.ConS1','_con5.val']:
# model.driver.parallel_derivs(['%s%s'%(n,con_name) for n in names])
# Recording
# Some constraints only exit on one process so cannot record everything
#recording_includes_options = ['obj.val']
#for j in range(npts):
# recording_includes_options.append('pt%s.ConCh' % str(j))
# recording_includes_options.append('pt%s.ConDs' % str(j))
# recording_includes_options.append('pt%s.ConS0' % str(j))
#recording_includes_options.append('pt%s.ConS1' % str(j))
#recording_includes_options.append('pt%s_con5.val' % str(j))
#from openmdao.recorders import DumpRecorder
#rec = DumpRecorder(out='data.dmp')
#model.driver.add_recorder(rec)
#rec.options['includes'] = recording_includes_options
#from openmdao.recorders.sqlite_recorder import SqliteRecorder
#rec = SqliteRecorder(out='data.sql')
#model.driver.add_recorder(rec)
#rec.options['includes'] = recording_includes_options
model.setup()
model.run()
print(model['obj.val'])
np.savetxt(open('1_uvec', 'w'), model.root.unknowns.vec)
import resource
print("Memory Usage:", resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1000.0, "MB (on unix)")
#----------------------------------------------------------------
# Below this line, code I was using for verifying and profiling.
#----------------------------------------------------------------
#profile = False
#params = model.driver.get_desvars().keys()
#unks = model.driver.get_objectives().keys() + model.driver.get_constraints().keys()
#if profile is True:
# import cProfile
# import pstats
# def zzz():
# for j in range(1):
# model.run()
# cProfile.run("model.calc_gradient(params, unks, mode='rev', return_format='dict')", 'profout')
# #cProfile.run("zzz()", 'profout')
# p = pstats.Stats('profout')
# p.strip_dirs()
# p.sort_stats('cumulative', 'time')
# p.print_stats()
# print('\n\n---------------------\n\n')
# p.print_callers()
# print('\n\n---------------------\n\n')
# p.print_callees()
#else:
# #model.check_total_derivatives()
# Ja = model.calc_gradient(params, unks, mode='rev', return_format='dict')
# for key1, value in sorted(Ja.items()):
# for key2 in sorted(value.keys()):
# print(key1, key2)
# print(value[key2])
# #print(Ja)
# #Jf = model.calc_gradient(params, unks, mode='fwd', return_format='dict')
# #print(Jf)
# #Jf = model.calc_gradient(params, unks, mode='fd', return_format='dict')
# #print(Jf)
# import pickle
# pickle.dump(Ja, open( "mdp_derivs.p", "wb" ))
#
#import pickle
#data = {}
#varlist = []
#picklevars = ['obj.val',
#'pt0_con1.val', 'pt0_con2.val', 'pt0_con3.val', 'pt0_con4.val', 'pt0_con5.val',
#'pt1_con1.val', 'pt1_con2.val', 'pt1_con3.val', 'pt1_con4.val', 'pt1_con5.val',
#]
#for var in picklevars:
#data[var] = model[var]
#pickle.dump(data, open( "mdp_execute.p", "wb" ))