forked from Scintillare/AIGan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_target_model.py
58 lines (48 loc) · 2.3 KB
/
train_target_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
import torchvision.datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
from models import MNIST_target_net
if __name__ == "__main__":
use_cuda = True
image_nc = 1
batch_size = 256
# Define what device we are using
print("CUDA Available: ", torch.cuda.is_available())
device = torch.device("cuda" if (use_cuda and torch.cuda.is_available()) else "cpu")
mnist_dataset = torchvision.datasets.MNIST('./dataset', train=True, transform=transforms.ToTensor(), download=True)
train_dataloader = DataLoader(mnist_dataset, batch_size=batch_size, shuffle=False, num_workers=1)
# training the target model
target_model = MNIST_target_net().to(device)
target_model.train()
opt_model = torch.optim.Adam(target_model.parameters(), lr=0.001)
epochs = 40
for epoch in range(epochs):
loss_epoch = 0
if epoch == 20:
opt_model = torch.optim.Adam(target_model.parameters(), lr=0.0001)
for i, data in enumerate(train_dataloader, 0):
train_imgs, train_labels = data
train_imgs, train_labels = train_imgs.to(device), train_labels.to(device)
logits_model = target_model(train_imgs)
loss_model = F.cross_entropy(logits_model, train_labels)
loss_epoch += loss_model
opt_model.zero_grad()
loss_model.backward()
opt_model.step()
print('loss in epoch %d: %f' % (epoch, loss_epoch.item()))
# save model
targeted_model_file_name = './MNIST_target_model.pth'
torch.save(target_model.state_dict(), targeted_model_file_name)
target_model.eval()
# MNIST test dataset
mnist_dataset_test = torchvision.datasets.MNIST('./dataset', train=False, transform=transforms.ToTensor(), download=True)
test_dataloader = DataLoader(mnist_dataset_test, batch_size=batch_size, shuffle=True, num_workers=1)
num_correct = 0
for i, data in enumerate(test_dataloader, 0):
test_img, test_label = data
test_img, test_label = test_img.to(device), test_label.to(device)
pred_lab = torch.argmax(target_model(test_img), 1)
num_correct += torch.sum(pred_lab==test_label,0)
print('accuracy in testing set: %f\n'%(num_correct.item()/len(mnist_dataset_test)))