diff --git a/examples/v1beta1/hp-tuning/hyperopt-distribution.yaml b/examples/v1beta1/hp-tuning/hyperopt-distribution.yaml index 7c8b64b99bf..1b3fc9c3a29 100644 --- a/examples/v1beta1/hp-tuning/hyperopt-distribution.yaml +++ b/examples/v1beta1/hp-tuning/hyperopt-distribution.yaml @@ -15,19 +15,19 @@ spec: maxTrialCount: 12 maxFailedTrialCount: 3 parameters: - - name: lr - parameterType: double - feasibleSpace: - min: "0.01" - max: "0.05" - step: "0.01" - distribution: "uniform" - - name: momentum - parameterType: double - feasibleSpace: - min: "0.5" - max: "0.9" - distribution: "logUniform" + # - name: lr + # parameterType: double + # feasibleSpace: + # min: "0.01" + # max: "0.05" + # step: "0.01" + # distribution: "uniform" + # - name: momentum + # parameterType: double + # feasibleSpace: + # min: "0.5" + # max: "0.9" + # distribution: "logUniform" - name: weight_decay parameterType: double feasibleSpace: @@ -45,12 +45,12 @@ spec: trialTemplate: primaryContainerName: training-container trialParameters: - - name: learningRate - description: Learning rate for the training model - reference: lr - - name: momentum - description: Momentum for the training model - reference: momentum + # - name: learningRate + # description: Learning rate for the training model + # reference: lr + # - name: momentum + # description: Momentum for the training model + # reference: momentum - name: weightDecay description: Weight decay for the training model reference: weight_decay @@ -71,8 +71,8 @@ spec: - "/opt/pytorch-mnist/mnist.py" - "--epochs=1" - "--batch-size=16" - - "--lr=${trialParameters.learningRate}" - - "--momentum=${trialParameters.momentum}" + # - "--lr=${trialParameters.learningRate}" + # - "--momentum=${trialParameters.momentum}" - "--weight-decay=${trialParameters.weightDecay}" - "--dropout-rate=${trialParameters.dropoutRate}" resources: