Table of contents
There exist multiple ways to describe a probability distribution of a univariate random variable
-
Probability density function (PDF)
$$p(x) = \Pr(X \in [x, x + dt))$$ - Cumulative distribution function (CDF)
However, there also exist other options that can be convenient in practice. For example, when working with temporal point processes or survival analysis, we often prefer the following two functions:
Each of these four functions uniquely defines the distribution of
The inverse survival function
This is equivalent to the inverse transform sampling.
The above procedure generates a sample from the entire support of the distribution (e.g., between 0 and
Here is an example where this can be useful.
Suppose
- Parameters
- rate
$\lambda > 0$
- rate
- Support:
$(0, \infty)$ - PDF
$$p(x) = \lambda \exp(- \lambda x)$$ - CDF
$$F(x) = 1 - \exp(-\lambda x)$$ - SF
$$S(x) = \exp(-\lambda x)$$ - Inverse SF
$$S^{-1}(u) = -\frac{1}{\lambda} \log (u)$$
- Parameters
- location
$\mu$ - scale
$s > 0$
- location
- Support:
$\mathbb{R}$ - PDF
$$p(x) = \frac{\exp\left(\frac{x - \mu}{s}\right)}{s \cdot \left(1 + \exp\left(\frac{x - \mu}{s}\right)\right)^2}$$ - CDF
$$F(x) = \frac{1}{1 + \exp\left(-\frac{x - \mu}{s}\right)}$$ - SF
$$S(x) = \frac{1}{1 + \exp\left(\frac{x - \mu}{s}\right)}$$ - Inverse SF
$$S^{-1}(u) = s \cdot \log\left(\frac{1-u}{u}\right) + \mu$$
- Parameters
- location
$\mu$ - scale
$s > 0$
- location
- Support:
$(0, \infty)$ - PDF
$$p(x) = \frac{\exp\left(\frac{\log(x) - \mu}{s}\right)}{x \cdot s \cdot \left(1 + \exp\left(\frac{\log(x) - \mu}{s}\right)\right)^2}$$ - CDF
$$F(x) = \frac{1}{1 + \exp\left(-\frac{\log(x) - \mu}{s}\right)}$$ - SF
$$S(x) = \frac{1}{1 + \exp\left(\frac{\log(x) - \mu}{s}\right)}$$ - Inverse SF
$$S^{-1}(u) = \exp\left(s \cdot \log\left(\frac{1-u}{u}\right) + \mu\right)$$
- Parameters
- location
$\mu$ - scale
$s > 0$
- location
- Support
$(0, \infty)$ - PDF
$$p(x) = \frac{1}{x s\sqrt{2\pi}}\exp\left(-\frac{(\log (x) - \mu)^2}{2s^2}\right)$$ - CDF
$$F(x) = \Phi\left(\frac{\log(x)-\mu}{s}\right)$$ where$\Phi$ is the CDF of the standard normal distribution. - SF
$$S(x) = \Phi\left(-\frac{\log(x)-\mu}{s}\right)$$ - Inverse SF
$$S^{-1}(u) = \exp\left(s \cdot \Phi^{-1}(1 - u) + \mu\right)$$
- Parameters
- location
$\mu$ - scale
$s > 0$
- location
- Support
$\mathbb{R}$ - PDF
$$p(x) = \frac{1}{s\sqrt{2\pi}}\exp\left(-\frac{(x - \mu)^2}{2s^2}\right)$$ - CDF
$$F(x) = \Phi\left(\frac{x-\mu}{s}\right)$$ where$\Phi$ is the CDF of the standard normal distribution. - SF
$$S(x) = \Phi\left(1 - \frac{x-\mu}{s}\right)$$ - Inverse SF
$$S^{-1}(u) = s \cdot \Phi^{-1}(1 - u) + \mu$$
- Parameters
- lower boundary
$a$ - upper boundary
$b > a$
- lower boundary
- Support:
$(a, b)$ - PDF
$$p(x) = \frac{1}{b - a}$$ - CDF
$$F(x) = \frac{x - a}{b - a}$$ - SF
$$S(x) = \frac{b - x}{b - a}$$ - Inverse SF
$$S^{-1}(u) = b - u \cdot (b - a)$$
- Parameters
- rate
$b > 0$ - concentration
$k > 0$
- rate
- Support:
$(0, \infty)$ - PDF
$$p(x) = b k x^{k-1} \exp(-bx^k)$$ - CDF
$$F(x) = 1 - \exp(-bx^k)$$ - SF
$$S(x) = \exp(-bx^k)$$ - Inverse SF
$$S^{-1}(u) = \left(-\frac{1}{b} \log (u)\right)^{\frac{1}{k}}$$