-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
268 lines (218 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import argparse
import os
import os.path as osp
import random
import torch
import torch.utils.checkpoint
import torch.utils.data
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler
from diffusers.optimization import get_scheduler
from omegaconf import OmegaConf
from transformers import AutoTokenizer, CLIPTextModel
from videoswap.data import build_dataset
from videoswap.models import build_model
from videoswap.pipelines import build_pipeline
from videoswap.utils.logger import MessageLogger, dict2str, reduce_loss_dict, set_path_logger
from videoswap.utils.vis_util import save_video_to_dir
def train(root_path, args):
# load config
opt = OmegaConf.to_container(OmegaConf.load(args.opt), resolve=True)
# set accelerator, mix-precision set in the environment by "accelerate config"
accelerator = Accelerator(
mixed_precision=opt['mixed_precision'],
)
# set experiment dir
with accelerator.main_process_first():
set_path_logger(accelerator, root_path, args.opt, opt, is_train=True)
# get logger
logger = get_logger('videoswap', log_level='INFO')
logger.info(accelerator.state, main_process_only=True)
logger.info(dict2str(opt))
# If passed along, set the training seed now.
if opt.get('manual_seed') is None:
opt['manual_seed'] = random.randint(1, 10000)
set_seed(opt['manual_seed'])
# Load the model components
tokenizer = AutoTokenizer.from_pretrained(
opt['path']['pretrained_model_path'],
subfolder='tokenizer',
use_fast=False,
)
text_encoder = CLIPTextModel.from_pretrained(
opt['path']['pretrained_model_path'],
subfolder='text_encoder',
)
vae = AutoencoderKL.from_pretrained(
opt['path']['pretrained_model_path'],
subfolder='vae',
)
unet_type = opt['models']['unet'].pop('type')
if unet_type == 'AnimateDiffUNet3DModel':
inference_config_path = opt['models']['unet'].pop('inference_config_path')
motion_module_path = opt['models']['unet'].pop('motion_module_path')
unet = build_model(unet_type).from_pretrained_2d(
opt['path']['pretrained_model_path'],
subfolder='unet',
unet_additional_kwargs=OmegaConf.to_container(OmegaConf.load(inference_config_path).unet_additional_kwargs),
)
motion_module_state_dict = torch.load(motion_module_path, map_location='cpu')
motion_module_state_dict = {k.replace('.pos_encoder','.processor.pos_encoder'):v for k, v in motion_module_state_dict.items()}
missing, unexpected = unet.load_state_dict(motion_module_state_dict, strict=False)
else:
raise NotImplementedError
adapter_type = opt['models']['adapter'].pop('type')
t2i_adapter = build_model(adapter_type)(**OmegaConf.to_container(OmegaConf.load(opt['models']['adapter']['model_config_path'])))
if opt.get('gradient_checkpointing'):
print('enable gradient checkpointing in the training and testing')
unet.enable_gradient_checkpointing()
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder.requires_grad_(False)
# set up validation pipeline
val_pipeline = build_pipeline(opt['val']['val_pipeline'])(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
adapter=t2i_adapter,
scheduler=DDIMScheduler.from_pretrained(
opt['path']['pretrained_model_path'],
subfolder='scheduler',
))
val_pipeline.enable_vae_slicing()
val_pipeline.scheduler.set_timesteps(opt['val']['editing_config']['num_inference_steps'])
# ----------------------------------------- set optimizer -----------------------------------------
optim_opt = opt['train']['optimizer']
optim_type = optim_opt.pop('type')
assert optim_type == 'AdamW'
optimizer = torch.optim.AdamW(t2i_adapter.parameters(), **optim_opt)
# Prepare learning rate scheduler in accelerate config
lr_scheduler = get_scheduler(
opt['train']['lr_scheduler'],
optimizer=optimizer,
num_warmup_steps=opt['train']['warmup_iter'],
num_training_steps=opt['train']['total_iter'],
)
# ------------------------------------------------------------------
# set up data loader (keep original and modify later)
dataset_opt = opt['datasets']
dataset_type = dataset_opt.pop('type')
train_dataset = build_dataset(dataset_type)(dataset_opt)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=dataset_opt['batch_size_per_gpu'],
shuffle=True,
num_workers=1,
)
# ---------------------------------------
unet, t2i_adapter, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, t2i_adapter, optimizer, train_dataloader, lr_scheduler)
weight_dtype = torch.float32
if accelerator.mixed_precision == 'fp16':
weight_dtype = torch.float16
print('enable float16 in the training and testing')
elif accelerator.mixed_precision == 'bf16':
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
# Start of config trainer
train_pipeline = build_pipeline(opt['train']['train_pipeline'])(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
adapter=t2i_adapter,
scheduler=DDPMScheduler.from_pretrained(
opt['path']['pretrained_model_path'],
subfolder='scheduler',
),
# training hyperparams
weight_dtype=weight_dtype,
accelerator=accelerator,
optimizer=optimizer,
max_grad_norm=1.0,
lr_scheduler=lr_scheduler,
tune_cfg=opt['train'].get('tune_cfg', None)
)
train_pipeline.enable_vae_slicing()
# Train!
total_batch_size = opt['datasets']['batch_size_per_gpu'] * accelerator.num_processes
logger.info('***** Running training *****')
logger.info(f' Num examples = {len(train_dataset)}')
logger.info(f' Num batches each epoch = {len(train_dataloader)}')
logger.info(f" Instantaneous batch size per device = {opt['datasets']['batch_size_per_gpu']}")
logger.info(f' Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}')
logger.info(f" Total optimization steps = {opt['train']['total_iter']}")
global_step = 0
msg_logger = MessageLogger(opt, global_step)
def make_data_yielder(dataloader):
while True:
for batch in dataloader:
yield batch
accelerator.wait_for_everyone()
train_data_yielder = make_data_yielder(train_dataloader)
# validation(unet, t2i_adapter, train_dataset, val_pipeline, opt, weight_dtype, global_step=0)
while global_step < opt['train']['total_iter']:
loss_dict = {}
batch = next(train_data_yielder)
"""************************* start of an iteration*******************************"""
loss = train_pipeline.step(batch)
loss_dict['loss'] = loss
log_dict = reduce_loss_dict(accelerator, loss_dict)
# torch.cuda.empty_cache()
"""************************* end of an iteration*******************************"""
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
global_step += 1
if accelerator.is_main_process:
if global_step % opt['logger']['print_freq'] == 0:
log_vars = {'iter': global_step}
log_vars.update({'lrs': lr_scheduler.get_last_lr()})
log_vars.update(log_dict)
msg_logger(log_vars)
if global_step % opt['val']['val_freq'] == 0:
validation(unet, t2i_adapter, train_dataset, val_pipeline, opt, weight_dtype, global_step=global_step)
if global_step % opt['logger']['save_checkpoint_freq'] == 0:
checkpoint_save_path = os.path.join(opt['path']['models'], f'models_{global_step}')
os.makedirs(checkpoint_save_path, exist_ok=True)
accelerator.save(t2i_adapter.state_dict(), os.path.join(checkpoint_save_path, 'adapter.pth'))
logger.info(f'save to {checkpoint_save_path}')
def validation(unet, t2i_adapter, train_dataset, val_pipeline, opt, weight_dtype, global_step=0):
unet.eval()
if t2i_adapter is not None and global_step != 0:
t2i_adapter.eval()
source_conditions = train_dataset.get_conditions()
else:
source_conditions = None
# 2. load data
source_frames = train_dataset.get_frames()
edited_results = val_pipeline.validation(
source_video=source_frames,
source_conditions=source_conditions,
source_prompt=opt['datasets']['prompt'],
editing_config=opt['val']['editing_config'],
dtype=weight_dtype,
train_dataset=train_dataset,
save_dir=opt['path']['visualization'])
save_dir = os.path.join(opt['path']['visualization'], f'Iter_{global_step}', 'source')
save_video_to_dir(source_frames, save_dir=save_dir, save_suffix='source', save_type=opt['val'].get('save_type', 'frame_gif'), fps=opt['val'].get('fps', 8))
for key, edit_video in edited_results.items():
if 'frame' not in opt['val'].get('save_type', 'frame_gif'):
save_dir = os.path.join(opt['path']['visualization'], f'Iter_{global_step}')
else:
save_dir = os.path.join(opt['path']['visualization'], f'Iter_{global_step}', key)
save_video_to_dir(edit_video, save_dir=save_dir, save_suffix=f"{key}_{opt['name']}", save_type=opt['val'].get('save_type', 'frame_gif'), fps=opt['val'].get('fps', 8))
unet.train()
if t2i_adapter is not None:
t2i_adapter.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, default='options/train_jeep.yml')
args = parser.parse_args()
root_path = osp.abspath(osp.join(__file__, osp.pardir))
train(root_path, args)