-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcross_validation.py
executable file
·212 lines (163 loc) · 8.8 KB
/
cross_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import pandas as pd
from collections import Counter
import re
import numpy as np
from sklearn.utils import shuffle
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS
from sklearn.metrics import f1_score, accuracy_score , recall_score , precision_score
import matplotlib.pyplot as plt
#from xgboost import XGBClassifier
from sklearn.ensemble import RandomForestClassifier
class cross_validation(object):
'''This class provides cross validation of any data set why incrementally increasing number
of samples in the training and test set and performing KFold splits at every iteration.
During cross validation the metrics accuracy, recall, precision, and f1-score are recored.
The results of the cross validation are display on four learning curves. '''
def __init__(self, model, X_data, Y_data, X_test=None, Y_test=None,
n_splits=3, init_chunk_size = 1000000, chunk_spacings = 100000, average = "binary",title = ""):
self.X, self.Y = shuffle(X_data, Y_data, random_state=1234)
self.model = model
self.n_splits = n_splits
self.chunk_size = init_chunk_size
self.chunk_spacings = chunk_spacings
self.title = title
self.X_train = []
self.X_test = []
self.Y_train = []
self.Y_test = []
self.X_holdout = []
self.Y_holdout = []
self.f1_train = []
self.f1_test = []
self.acc_train = []
self.acc_test = []
self.pre_train = []
self.pre_test = []
self.rec_train = []
self.rec_test = []
self.f1_mean_train = []
self.f1_mean_test = []
self.acc_mean_train = []
self.acc_mean_test = []
self.pre_mean_train = []
self.pre_mean_test = []
self.rec_mean_train = []
self.rec_mean_test = []
self.training_size = []
self.averageType = average
def make_chunks(self):
'''Partitions data into chunks for incremental cross validation'''
# get total number of points
self.N_total = self.X.shape[0]
# partition data into chunks for learning
self.chunks = list(np.arange(self.chunk_size, self.N_total, self.chunk_spacings ))
self.remainder = self.X.shape[0] - self.chunks[-1]
self.chunks.append( self.chunks[-1] + self.remainder )
def train_for_learning_curve(self):
'''KFold cross validates model and records metric scores for learning curves.
Metrics scored are f1-score, precision, recall, and accuracy'''
# partiton data into chunks
self.make_chunks()
# for each iteration, allow the model to use 10 more samples in the training set
self.skf = StratifiedKFold(n_splits=self.n_splits, shuffle=True, random_state=1234)
# iterate through the first n samples
for n_points in self.chunks:
# split the first n samples in k folds
for train_index, test_index in self.skf.split(self.X[:n_points], self.Y[:n_points]):
self.train_index, self.test_index = train_index, test_index
self.X_train = self.X[self.train_index]
self.X_test = self.X[self.test_index]
self.Y_train = self.Y[self.train_index]
self.Y_test = self.Y[self.test_index]
self.model.fit(self.X_train, self.Y_train)
self.y_pred_train = self.model.predict(self.X_train)
self.y_pred_test = self.model.predict(self.X_test)
self.log_metric_scores_()
self.log_metric_score_means_()
self.training_size.append(n_points)
def validate_for_holdout_set(self, X_holdout, Y_holdout):
self.X_test = X_holdout
self.Y_test = Y_holdout
# partiton data into chunks
self.make_chunks()
for n_points in self.chunks:
self.X_train = self.X[:n_points]
self.Y_train = self.Y[:n_points]
self.model.fit(self.X_train, self.Y_train)
self.y_pred_train = self.model.predict(self.X_train)
self.y_pred_test = self.model.predict(self.X_test)
self.log_metric_scores_()
self.log_metric_score_means_()
self.training_size.append(n_points)
def log_metric_score_means_(self):
'''Recrods the mean of the four metrics recording during training'''
self.f1_mean_train.append(np.sum(self.f1_train)/len(self.f1_train))
self.f1_mean_test.append(np.sum(self.f1_test)/len(self.f1_test))
self.acc_mean_train.append(np.sum(self.acc_train)/len(self.acc_train))
self.acc_mean_test.append(np.sum(self.acc_test)/len(self.acc_test))
self.pre_mean_train.append(np.sum(self.pre_train)/len(self.pre_train))
self.pre_mean_test.append(np.sum(self.pre_test)/len(self.pre_test))
self.rec_mean_train.append(np.sum(self.rec_train)/len(self.rec_train))
self.rec_mean_test.append(np.sum(self.rec_test)/len(self.rec_test))
self.reinitialize_metric_lists_()
def reinitialize_metric_lists_(self):
'''Reinitializes metrics lists for training'''
self.f1_train = []
self.f1_test = []
self.acc_train = []
self.acc_test = []
self.pre_train = []
self.pre_test = []
self.rec_train = []
self.rec_test = []
def log_metric_scores_(self):
'''Records the metric scores during each training iteration'''
self.f1_train.append(f1_score(self.Y_train, self.y_pred_train, average=self.averageType))
self.acc_train.append(accuracy_score( self.Y_train, self.y_pred_train) )
self.pre_train.append(precision_score(self.Y_train, self.y_pred_train, average=self.averageType))
self.rec_train.append(recall_score( self.Y_train, self.y_pred_train, average=self.averageType) )
self.f1_test.append(f1_score(self.Y_test, self.y_pred_test, average=self.averageType))
self.acc_test.append(accuracy_score(self.Y_test, self.y_pred_test))
self.pre_test.append(precision_score(self.Y_test, self.y_pred_test, average=self.averageType))
self.rec_test.append(recall_score(self.Y_test, self.y_pred_test,average=self.averageType))
def plot_learning_curve(self):
'''Plots f1 and accuracy learning curves for a given model and data set'''
fig = plt.figure(figsize = (17,12))
# plot f1 score learning curve
fig.add_subplot(221) # left
plt.title(self.title + "\n" + "F1-Score vs. Number of Training Samples")
#plt.plot(self.training_size, self.f1_mean_train, label="Train")
plt.plot(self.training_size, self.f1_mean_test, label="Test");
plt.xlabel("Number of Training Samples")
plt.ylabel("F1-Score")
plt.legend(loc=4);
# plot accuracy learning curve
fig.add_subplot(222) # right
plt.title(self.title + "\n" + "Accuracy vs. Number of Training Samples")
#plt.plot(self.training_size, self.acc_mean_train, label="Train")
plt.plot(self.training_size, self.acc_mean_test, label="Test");
plt.xlabel("Number of Training Samples")
plt.ylabel("Accuracy")
plt.legend(loc=4);
# plot precision learning curve
fig.add_subplot(223) # left
plt.title(self.title + "\n" + "Precision Score vs. Number of Training Samples")
#plt.plot(self.training_size, self.pre_mean_train, label="Train")
plt.plot(self.training_size, self.pre_mean_test, label="Test");
plt.xlabel("Number of Training Samples")
plt.ylabel("Precision")
plt.ylim(min(self.pre_mean_test), max(self.pre_mean_train) + 0.05)
plt.legend(loc=4);
# plot accuracy learning curve
fig.add_subplot(224) # right
plt.title(self.title + "\n" + "Recall vs. Number of Training Samples")
#plt.plot(self.training_size, self.rec_mean_train, label="Train")
plt.plot(self.training_size, self.rec_mean_test, label="Test");
plt.xlabel("Number of Training Samples")
plt.ylabel("Recall")
plt.legend(loc=4)
plt.show()