-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
executable file
·319 lines (231 loc) · 10.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import pandas as pd
from collections import Counter
import re
import numpy as np
from sklearn.utils import shuffle
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS
from sklearn.metrics import f1_score, accuracy_score , recall_score , precision_score
import matplotlib.pyplot as plt
from sklearn import preprocessing
#from xgboost import XGBClassifier
from sklearn.ensemble import RandomForestClassifier
from cross_validation import cross_validation
import wordcloud
df = pd.read_csv('DefFinal.csv')
df = df.dropna()
df = df.sample(5000)
dft = df.loc[df['label'] == 'REAL']
import io
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
#word_tokenize accepts a string as an input, not a file.
stop_words = set(stopwords.words('english'))
file = ' '.join(dft.text.values)# Use this to read file content as a stream:
print(type(file))
werd = list()
for r in file.split():
#print(r)
if not r in stop_words:
werd.append(r)
wordcloud = wordcloud.WordCloud(width = 1000, height = 500).generate(' '.join(werd))
plt.figure(figsize=(15,8))
plt.imshow(wordcloud)
plt.axis("off")
plt.show()
# Preparing the target and predictors for modeling
X_body_text = df.text.values
X_headline_text = df.title.values
y = df.label.values
# 1. INSTANTIATE
enc = preprocessing.LabelEncoder()
# 2. FIT
enc.fit(y)
# 3. Transform
y = enc.transform(y)
tfidf = TfidfVectorizer(stop_words=ENGLISH_STOP_WORDS,ngram_range=(1,2),max_df= 0.85, min_df= 0.01)
X_body_tfidf = tfidf.fit_transform(X_body_text)
X_headline_tfidf = tfidf.fit_transform (X_headline_text)
X_headline_tfidf_train, X_headline_tfidf_test, y_headline_train, y_headline_test = train_test_split(X_headline_tfidf,y, test_size = 0.2, random_state=1234)
X_body_tfidf_train, X_body_tfidf_test, y_body_train, y_body_test = train_test_split(X_body_tfidf,y, test_size = 0.2, random_state=1234)
'''s
############# LOGISTIC REGRESSION ##################################
lr_headline = LogisticRegression(penalty='l1')
# train model
lr_headline.fit(X_headline_tfidf_train, y_headline_train)
# get predictions for article section
y_headline_pred = lr_headline.predict(X_headline_tfidf_test)
# print metrics
print ("Logistig Regression F1 and Accuracy Scores : \n")
print ("F1 score {:.4}%".format( f1_score(y_headline_test, y_headline_pred, average='macro')*100))
print ("Accuracy score {:.4}%".format(accuracy_score(y_headline_test, y_headline_pred)*100))
cros_val_list = cross_val_score(lr_headline, X_headline_tfidf,y,cv=7)
print(cros_val_list)
print(cros_val_list.mean())
xtrain,xtest,ytrain,ytest = train_test_split(X_headline_tfidf,y)
cv = cross_validation(lr_headline, xtrain, ytrain , n_splits=5,init_chunk_size = 100, chunk_spacings = 10, average = "binary")
cv.validate_for_holdout_set(xtest, ytest)
cv.plot_learning_curve()
lr_body = LogisticRegression(penalty='l1')
lr_body.fit(X_body_tfidf_train, y_body_train)
y_lr_body_pred = lr_body.predict(X_body_tfidf_test)
# print metrics
print ("Random Forest F1 and Accuracy Scores : \n")
print ( "F1 score {:.4}%".format( f1_score(y_body_test, y_lr_body_pred, average='macro')*100 ) )
print ( "Accuracy score {:.4}%".format(accuracy_score(y_body_test, y_lr_body_pred)*100) )
xtrain,xtest,ytrain,ytest = train_test_split(X_body_tfidf,y)
cv = cross_validation(lr_body, xtrain, ytrain , n_splits=5,init_chunk_size = 1000, chunk_spacings = 10, average = "binary")
cv.validate_for_holdout_set(xtest, ytest)
cv.plot_learning_curve()
################ Random Forest ######################################
rcf_headline = RandomForestClassifier(n_estimators=100,n_jobs=3)
rcf_headline.fit(X_headline_tfidf_train, y_headline_train)
y_rc_headline_pred = rcf_headline.predict(X_headline_tfidf_test)
# print metrics
print ("Random Forest F1 and Accuracy Scores : \n")
print ( "F1 score {:.4}%".format( f1_score(y_headline_test, y_rc_headline_pred, average='macro')*100 ) )
print ( "Accuracy score {:.4}%".format(accuracy_score(y_headline_test, y_rc_headline_pred)*100) )
cros_val_list = cross_val_score(rcf_headline, X_headline_tfidf,y,cv=5)
print(cros_val_list)
print(cros_val_list.mean())
xtrain,xtest,ytrain,ytest = train_test_split(X_headline_tfidf,y)
cv = cross_validation(rcf_headline, xtrain, ytrain , n_splits=5,init_chunk_size = 1000, chunk_spacings = 10, average = "binary")
cv.validate_for_holdout_set(xtest, ytest)
cv.plot_learning_curve()
rcf_body = RandomForestClassifier(n_estimators=100,n_jobs=3)
rcf_body.fit(X_body_tfidf_train, y_body_train)
y_rc_body_pred = rcf_body.predict(X_body_tfidf_test)
# print metrics
print ("Random Forest F1 and Accuracy Scores : \n")
print ( "F1 score {:.4}%".format( f1_score(y_body_test, y_rc_body_pred, average='macro')*100 ) )
print ( "Accuracy score {:.4}%".format(accuracy_score(y_body_test, y_rc_body_pred)*100) )
xtrain,xtest,ytrain,ytest = train_test_split(X_body_tfidf,y)
cv = cross_validation(rcf_body, xtrain, ytrain , n_splits=5,init_chunk_size = 1000, chunk_spacings = 10, average = "binary")
cv.validate_for_holdout_set(xtest, ytest)
cv.plot_learning_curve()
'''
############# ##################################
lr_body = LinearSVC()
# train model
lr_body.fit(X_body_tfidf_train, y_body_train)
# get predictions for article section
y_body_pred= lr_body.predict(X_body_tfidf_test)
print(type(y_body_pred))
print(type(y_body_test))
print(y_body_test)
print(y_body_pred)
#y_body_test
pred_label = list()
for i in y_body_pred:
if(i == 0):
pred_label.append("REAL")
else:
pred_label.append("FAKE")
pred_l = np.array(pred_label)
y_body_test["pred"] = pred_label
# print metrics
print ("SVM F1 and Accuracy Scores : \n")
print ("F1 score {:.4}%".format( f1_score(y_body_test, y_body_pred, average='macro')*100))
print ("Accuracy score {:.4}%".format(accuracy_score(y_body_test, y_body_pred)*100))
cros_val_list = cross_val_score(lr_body, X_body_tfidf,y,cv=7)
print(cros_val_list)
print(cros_val_list.mean())
xtrain,xtest,ytrain,ytest = train_test_split(X_body_tfidf,y)
cv = cross_validation(lr_body, xtrain, ytrain , n_splits=5,init_chunk_size = 1000, chunk_spacings = 10, average = "binary")
cv.validate_for_holdout_set(xtest, ytest)
cv.plot_learning_curve()
svm_headline = LinearSVC(n_estimators=100,n_jobs=3)
svm_headline.fit(X_headline_tfidf_train, y_headline_train)
y_svm_headline_pred = svm_headline.predict(X_headline_tfidf_test)
# print metrics
print ("Random Forest F1 and Accuracy Scores : \n")
print ( "F1 score {:.4}%".format( f1_score(y_headline_test, y_svm_headline_pred, average='macro')*100 ) )
print ( "Accuracy score {:.4}%".format(accuracy_score(y_headline_test, y_svm_headline_pred)*100) )
cros_val_list = cross_val_score(svm_headline, X_headline_tfidf,y,cv=5)
print(cros_val_list)
print(cros_val_list.mean())
xtrain,xtest,ytrain,ytest = train_test_split(X_headline_tfidf,y)
cv = cross_validation(svm_headline, xtrain, ytrain , n_splits=5,init_chunk_size = 1000, chunk_spacings = 10, average = "binary")
cv.validate_for_holdout_set(xtest, ytest)
cv.plot_learning_curve()
############# Multinomial NB ##################################
mnb_headline = RandomForestClassifier(n_estimators=100,n_jobs=3)
mnb_headline.fit(X_headline_tfidf_train, y_headline_train)
y_mnb_headline_pred = mnb_headline.predict(X_headline_tfidf_test)
# print metrics
print ("Random Forest F1 and Accuracy Scores : \n")
print ( "F1 score {:.4}%".format( f1_score(y_headline_test, y_mnb_headline_pred, average='macro')*100 ) )
print ( "Accuracy score {:.4}%".format(accuracy_score(y_headline_test, y_mnb_headline_pred)*100) )
cros_val_list = cross_val_score(mnb_headline, X_headline_tfidf,y,cv=5)
print(cros_val_list)
print(cros_val_list.mean())
xtrain,xtest,ytrain,ytest = train_test_split(X_headline_tfidf,y)
cv = cross_validation(mnb_headline, xtrain, ytrain , n_splits=5,init_chunk_size = 1000, chunk_spacings = 10, average = "binary")
cv.validate_for_holdout_set(xtest, ytest)
cv.plot_learning_curve()
mnb_body = RandomForestClassifier(n_estimators=100,n_jobs=3)
mnb_body.fit(X_body_tfidf_train, y_body_train)
y_mnb_body_pred = mnb_body.predict(X_body_tfidf_test)
# print metrics
print ("Random Forest F1 and Accuracy Scores : \n")
print ( "F1 score {:.4}%".format( f1_score(y_body_test, y_mnb_body_pred, average='macro')*100 ) )
print ( "Accuracy score {:.4}%".format(accuracy_score(y_body_test, y_mnb_body_pred)*100) )
xtrain,xtest,ytrain,ytest = train_test_split(X_body_tfidf,y)
cv = cross_validation(mnb_body, xtrain, ytrain , n_splits=5,init_chunk_size = 1000, chunk_spacings = 10, average = "binary")
cv.validate_for_holdout_set(xtest, ytest)
cv.plot_learning_curve()
############# Multinomial NB ##################################
########### LSTM ##################################################
from keras.preprocessing.text.Tokenizer import Tokenizer
xlist = list(X_train)
#print(xlist)
tokenizer = Tokenizer()
tokenizer.fit_on_texts(xlist)
print(len(tokenizer.word_index))
sequences = tokenizer.texts_to_sequences(xlist)
#print(sequences)
l = len(max(sequences,key = lambda x : len(x)))
print(l)
padded_sequences = pad_sequences(sequences, maxlen = 1000) #padded_sequencies is the tokenized and padded data
#padded_sequences
model = Sequential()
model.add(Embedding(len(tokenizer.word_index)+1, 128, input_length=1000)) #maxlen of tokenizerwordindex
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2)) #128 depends on no of words in a row
model.add(Dense(2, activation='sigmoid')) #2 because of one hot enc
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
from keras.utils import to_categorical
y_train_new = []
y_test_new = []
for x in y_train:
if x == 'sarc':
y_train_new.append(1)
else:
y_train_new.append(0)
for x in y_test:
if x == 'sarc':
y_test_new.append(1)
else:
y_test_new.append(0)
#print(y_train_new)
y_train_new = to_categorical(y_train_new, num_classes = 2)
y_test_new = to_categorical(y_test_new, num_classes = 2)
#print(y_train_new)
model.fit(padded_sequences, y_train_new, validation_split=0.2, epochs=3)
xlist_test = list(X_test)
#print(xlist)
#tokenizer = Tokenizer()
#tokenizer.fit_on_texts(xlist_test)
print(len(tokenizer.word_index))
sequences = tokenizer.texts_to_sequences(xlist_test)
#print(sequences)
l_test = len(max(sequences,key = lambda x : len(x)))
print(l_test)
padded_sequences_test = pad_sequences(sequences, maxlen = 1000) #padded_sequencies is the tokenized and padded data
#padded_sequences
scores = model.evaluate(padded_sequences_test,y_test_new,verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
#y_pred = model.predict()