-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_ae.py
77 lines (64 loc) · 2.66 KB
/
train_ae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions.normal import Normal
import numpy as np
from models import Autoencoder
from dataset import load
def train(epoch):
model.train()
train_loss = 0.
for i, x in enumerate(train_loader):
optimizer.zero_grad()
if args.cuda:
x = x.cuda()
_, logits = model(x)
loss = criterion(logits, x)
train_loss += loss.item()
loss.backward()
optimizer.step()
if args.interval > 0 and i % args.interval == 0:
print('Epoch: {} | Batch: {}/{} ({:.0f}%) | Loss: {:.6f}'.format(
epoch, args.batch_size*i, len(train_loader.dataset),
100.*(args.batch_size*i)/len(train_loader.dataset),
loss.item()
))
train_loss /= len(train_loader)
print('* (Train) Epoch: {} | Loss: {:.4f}'.format(epoch, train_loss))
return train_loss
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--epochs', type=int, default=5)
parser.add_argument('--batch-size', type=int, default=32)
parser.add_argument('--lr', type=float, default=5e-4)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--seq-len', type=int, default=20+2)
parser.add_argument('--embedding-dim', type=int, default=200)
parser.add_argument('--latent-dim', type=int, default=100)
parser.add_argument('--enc-hidden-dim', type=int, default=100)
parser.add_argument('--dec-hidden-dim', type=int, default=600)
parser.add_argument('--interval', type=int, default=10)
parser.add_argument('--cuda', type=bool, default=torch.cuda.is_available())
args = parser.parse_args()
print(args)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
train_loader, vocab = load(args.batch_size, args.seq_len)
model = Autoencoder(args.enc_hidden_dim, args.dec_hidden_dim, args.embedding_dim,
args.latent_dim, vocab.size(), args.dropout, args.seq_len)
if args.cuda:
model = model.cuda()
print('Parameters:', sum([p.numel() for p in model.parameters() if \
p.requires_grad]))
print('Vocab size:', vocab.size())
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
best_loss = np.inf
for epoch in range(1, args.epochs + 1):
loss = train(epoch)
if loss < best_loss:
best_loss = loss
print('* Saved')
torch.save(model.state_dict(), 'autoencoder.th')