forked from imsb-uke/scGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
110 lines (87 loc) · 3.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#!/usr/bin/python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import json
import ntpath
import os
from multiprocessing import Pool, Manager
from shutil import copyfile
from estimators.run_exp import run_exp
from preprocessing.write_tfrecords import process_files
if __name__ == '__main__':
"""
Main script to process the data and or start the training or
generate cells from an existing model
"""
parser = argparse.ArgumentParser()
parser.add_argument('--param', required=True,
help='Path to the parameters json file')
parser.add_argument(
'--process', required=False,
default=False, action='store_true',
help='process the raw file and generate TF records for training')
parser.add_argument(
'--train', required=False,
default=False, action='store_true',
help='Use the generated TF records for training the model')
parser.add_argument(
'--generate', required=False,
default=False, action='store_true',
help='generate will be used to generate in-silico cells')
parser.add_argument(
'--cells_no', required=False, nargs='+',
help=' The cells number to be generated if the scGAN model is trained.'
' Cells number per cluster if the cscGAN model is trained.'
' If the scRNA data has 10 clusters, 10 integers should be passed.')
parser.add_argument(
'--model_path', required=False,
help=' The path to the trained model folder. '
'This folder must include the trained model '
'job folder as well as the parameters json file.')
parser.add_argument('--save_path', required=False,
help=' The path where the generated cells will be saved')
a = parser.parse_args()
# read experiments parameters file
with open(a.param, 'r') as fp:
parameters = json.load(fp)
all_exp_dir = parameters['exp_param']['experiments_dir']
GPU_NB = parameters['exp_param']['GPU']
experiments = parameters['experiments']
# loop over the different experiments specified in the json file
exp_folders = []
for exp in experiments:
exp_param = experiments[exp]
exp_dir = os.path.join(all_exp_dir, exp)
raw_input = exp_param['input_ds']['raw_input']
raw_file_name = ntpath.basename(raw_input)
if a.process:
try:
os.makedirs(exp_dir)
except OSError:
raise OSError('The selected experiment folder already exists, '
'please remove it or select new one.')
# copy raw file in every experiment folder
copyfile(raw_input, os.path.join(exp_dir, raw_file_name))
# create param.json file in every experiment folder
with open(os.path.join(exp_dir, 'parameters.json'), 'w') as fp:
fp.write(json.dumps(exp_param, sort_keys=True, indent=4))
exp_folders.append(exp_dir)
if a.process:
process_files(exp_folders)
if a.train:
# create a queue with jobs and train models in parallel on
# separate GPUs using multiprocessing package
manager = Manager()
avail_gpus = manager.list(GPU_NB)
po = Pool(len(GPU_NB))
r = po.map_async(run_exp,
((exp_folder, avail_gpus) for exp_folder in exp_folders))
r.wait()
po.close()
po.join()
if a.generate:
run_exp((a.model_path, [0]), mode='generate', cells_no=a.cells_no,
save_cells_path=a.save_path)