-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBPF4.py
249 lines (208 loc) · 8.08 KB
/
BPF4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#coding:utf-8
#
# A class of IIR Band Pass Filter, process twice !
# (Target response is 2nd harmonic level less than -70dB)
#
import sys
import numpy as np
from matplotlib import pyplot as plt
from scipy import signal
from iir1 import *
from ema1 import *
# Check version
# Python 3.6.4 on win32 (Windows 10)
# numpy 1.14.0
# matplotlib 2.1.1
# scipy 1.4.1
class Class_BPFtwice(object):
def __init__(self, fc=1000, gain=1.0, Q=40.0, sampling_rate=48000, moving_average_factor=None, down_sample_factor=None ):
# initalize
self.sr= sampling_rate
self.fc= fc # center frequency of Band Pass Filter by unit is [Hz]
self.gain= gain # magnification
self.Q= Q # Q factor
# check Q
if self.Q <= 0.0:
print ('error: Q must be > 0. filter becomes flat. (Class_BPF)')
# sys.exit()
self.a= np.array( [ 1.0, 0.0, 0.0])
self.b= np.array( [ 1.0, 0.0, 0.0])
else:
self.a, self.b = self.bpf1()
#-------------------------------------
# set for filtering2
#
# Exponential Moving Average with Half-wave rectification, and smoothing via lpf
if moving_average_factor is not None:
self.maf= moving_average_factor
self.ema= Class_EMA1(N=self.maf)
else:
self.ema= None
# Down sampling to decrease temporal resolution
if down_sample_factor is None:
self.down_sample_factor= 1
else:
self.down_sample_factor= int(down_sample_factor)
#
#--------------------------------------
def bpf1(self,):
# primary digital filter
a= np.zeros(3)
b= np.zeros(3)
wc= 2.0 * np.pi * self.fc / self.sr
g0= 2.0 * np.tan( wc/2.0)
a[0]= 4.0 + 2.0 * g0 / self.Q + g0 * g0
a[1]= -8.0 + 2.0 * g0 * g0
a[2]= 4.0 - 2.0 * g0 / self.Q + g0 * g0
b[0]= 2.0 * self.gain * g0 / self.Q
b[2]= -2.0 * self.gain * g0 / self.Q
b /= a[0]
a /= a[0]
return a,b
def iir2(self,x):
# calculate iir filter: x is input, y is output
# y[0]= b[0] * x[0] + b[1] * x[-1] + b[2] * x[-1]
# y[0]= y[0] - a[1] * y[-1] - a[2] * y[-1]
y= np.zeros(len(x))
for n in range(len(x)):
for i in range(len(self.b)):
if n - i >= 0:
y[n] += self.b[i] * x[n - i]
for j in range(1, len(self.a)):
if n - j >= 0:
y[n] -= self.a[j] * y[n - j]
return y
def fone(self, xw):
# calculate one point of frequecny response
f= xw / self.sr
yi= self.b[0] + self.b[1] * np.exp(-2j * np.pi * f) + self.b[2] * np.exp(-2j * np.pi * 2 * f)
yb= self.a[0] + self.a[1] * np.exp(-2j * np.pi * f) + self.a[2] * np.exp(-2j * np.pi * 2 * f)
val= yi/yb
val= val * val
return np.sqrt(val.real ** 2 + val.imag ** 2)
def H0(self, freq_low=100, freq_high=7500, Band_num=256):
# get Log scale frequecny response, from freq_low to freq_high, Band_num points
amp=[]
freq=[]
bands= np.zeros(Band_num+1)
fcl=freq_low * 1.0 # convert to float
fch=freq_high * 1.0 # convert to float
delta1=np.power(fch/fcl, 1.0 / (Band_num)) # Log Scale
bands[0]=fcl
#print ("i,band = 0", bands[0])
for i in range(1, Band_num+1):
bands[i]= bands[i-1] * delta1
#print ("i,band =", i, bands[i])
for f in bands:
amp.append(self.fone(f))
return np.log10(amp) * 20, bands # = amp value, freq list
def H0_show(self,freq_low=100, freq_high=7500, Band_num=256):
# draw frequecny response
plt.xlabel('Hz')
plt.ylabel('dB')
plt.title('Band Pass Filter')
amp, freq=self.H0(freq_low=freq_low, freq_high=freq_high, Band_num=Band_num)
plt.plot(freq, amp)
plt.grid()
plt.show()
def filtering(self, xin):
# filtering process, using scipy
return signal.lfilter(self.b, self.a, self.filtering0(xin))
def filtering0(self, xin):
# filtering process, using scipy
return signal.lfilter(self.b, self.a, xin)
def filtering2(self, xin, dwn_len):
# xin should be mono
# (1)filtering process, using scipy
# (2)Exponential Moving Average with Half-wave rectification, and smoothing via lpf
# (3)down sampling
self.dwn_len=dwn_len
return np.resize( self.ema ( self.filtering(xin) ) , (self.dwn_len, self.down_sample_factor))[:,0]
def check_minphase(self,):
zeros, poles, _ = signal.tf2zpk(self.b, self.a)
print ( zeros)
print ( poles)
for kai in np.concatenate([zeros,poles]):
if not np.abs(kai) < 1.0:
print ('This is not min phase')
def f_show(self, worN=1024):
# show frequency response, using scipy
wlist, fres = signal.freqz(self.b, self.a, worN=worN)
fres= fres * fres
fig = plt.figure()
ax1 = fig.add_subplot(111)
flist = wlist / ((2.0 * np.pi) / self.sr)
plt.title('frequency response')
ax1 = fig.add_subplot(111)
plt.semilogx(flist, 20 * np.log10(abs(fres)), 'b') # plt.plot(flist, 20 * np.log10(abs(fres)), 'b')
plt.ylabel('Amplitude [dB]', color='b')
plt.xlabel('Frequency [Hz]')
ax2 = ax1.twinx()
angles = np.unwrap(np.angle(fres))
angles = angles / ((2.0 * np.pi) / 360.0)
plt.semilogx(flist, angles, 'g') # plt.plot(flist, angles, 'g')
plt.ylabel('Angle(deg)', color='g')
plt.grid()
plt.axis('tight')
plt.show()
def wav_show(self,y1,y2=None, y3=None):
# draw wavform
plt.figure()
plt.subplot(311)
plt.xlabel('time step')
plt.ylabel('amplitude')
tlist= np.arange( len(y1) ) * (1 /self.sr)
plt.plot( tlist, y1)
if y2 is not None:
plt.subplot(312)
plt.xlabel('time step')
plt.ylabel('amplitude')
tlist= np.arange( len(y2) ) * (1 /self.sr)
plt.plot( tlist, y2)
if y3 is not None:
plt.subplot(313)
plt.xlabel('time step')
plt.ylabel('amplitude')
tlist= np.arange( len(y3) ) * (1 /self.sr)
plt.plot( tlist, y3)
plt.grid()
plt.axis('tight')
plt.show()
if __name__ == '__main__':
from scipy import signal
from scipy.io.wavfile import read as wavread
# instance
fc1=1000
dsf=10
Q0=40.0
bpf=Class_BPFtwice(fc=fc1, Q=Q0, sampling_rate=44100, moving_average_factor=80, down_sample_factor=dsf)
# draw frequecny response
bpf.H0_show(freq_high=20000)
# draw frequecny response, using scipy
bpf.f_show()
# load a sample wav
#path0='wav/400Hz-10dB_44100Hz_400msec.wav'
#path0='wav/1KHz-10dB_44100Hz_400msec.wav'
#path0='wav/3KHz-10dB_44100Hz_400msec.wav'
#path0='wav/5KHz-10dB_44100Hz_400msec.wav'
path0='wav/1KHz-10dB_44100Hz_400ms-TwoTube_stereo.wav'
try:
sr, y = wavread(path0)
except:
print ('error: wavread ')
sys.exit()
else:
yg= y / (2 ** 15)
if yg.ndim == 2: # if stereo
yg= np.average(yg, axis=1)
print ('sampling rate ', sr)
print ('y.shape', yg.shape)
y2=bpf.filtering( yg) # iir2( yg)
# Exponential Moving Average with Half-wave rectification
ema1= Class_EMA1()
y3=ema1( y2)
bpf.wav_show(yg, y2, y3)
# compare both for check
y5=bpf.filtering2(yg, int(len(yg)/dsf))
print ('y5.shape', y5.shape)
bpf.wav_show(yg,y3,y5)