Skip to content

Latest commit

 

History

History
32 lines (22 loc) · 718 Bytes

readme.md

File metadata and controls

32 lines (22 loc) · 718 Bytes

Boundary Seeking Generative Adversarial Networks

Loss Function

  • used GAN loss at D net
  • used L2 loss at G net

Architecture Networks

  • just 2 fc layers network for D/G nets
  • In original BGAN paper, using simple 4 conv layers * 3 fc layers

Tensorboard

result

Elapsed time : 920s with GTX 1060 6GB x 1

Result

Name Global Step 50k Global Step 100k Global Step 200k
BGAN img img img

To-Do

  • Add f-divergences
    • KL
    • Reverse-KL
    • JS
    • Squared-Hellinger
    • Pearson x^2
  • Add Reinforce-based BGAN