-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathimagenes_asd.py
49 lines (43 loc) · 1.57 KB
/
imagenes_asd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import cv2
import numpy as np
models = ['yolo','retinanet','faster','maskrcnn','trident']
dataset = 'modanet'
img_path = input('img path: ')
im_id = img_path.split('/')[-1].split('.')[0]
#im_id = 433734
if dataset =='df2':
im_id = str(im_id).zfill(6)
img_gt = cv2.imread( 'gt_imgs/{}_{}.png'.format(dataset ,im_id))
bordersize=10
img_gt = cv2.copyMakeBorder(
img_gt,
top=bordersize,
bottom=bordersize,
left=bordersize,
right=bordersize,
borderType=cv2.BORDER_CONSTANT,
value=[255,255,255]
)
assert img_gt is not None
img_cat = img_gt
for i,model in enumerate(models):
if dataset=='modanet':
im_id = str(im_id).zfill(7)
img_path = 'output/ouput-test_{}_{}_{}.jpg'.format(im_id,model,dataset)
#print(img_path)
img = cv2.imread(img_path)
assert img is not None
img = cv2.copyMakeBorder(
img,
top=bordersize,
bottom=bordersize,
left=bordersize,
right=bordersize,
borderType=cv2.BORDER_CONSTANT,
value=[255,255,255]
)
img_cat = np.hstack((img_cat,img))
cv2.namedWindow('asd',cv2.WINDOW_NORMAL)
cv2.imshow('asd',img_cat)
cv2.imwrite('output/output_cat/{}_{}_cat.jpg'.format(dataset,im_id),img_cat)
cv2.waitKey(0)