-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments.py
220 lines (178 loc) · 7.12 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#*******************************************************************************
# Imports and Setup
#*******************************************************************************
# packages
import argparse
import json
import pandas as pd
import pickle
from prdc import compute_prdc
import yaml
# torch imports
import torch
from torch.distributions import (
Categorical, MixtureSameFamily, MultivariateNormal
)
# file imports
from is_methods.CEIS_GM import CEIS_GM
from is_methods.SIS_GM import SIS_GM
from utils import outside_ellipsoid, min_enclosing_ellipsoid
# setup
parser = argparse.ArgumentParser()
parser.add_argument('--simulator',
choices=['robot', 'racecar', 'f16'],
default='robot',
help='Choose an autonomous systems simulator.')
simulator = parser.parse_args()
with open('configs/{}.yaml'.format(simulator.simulator), 'r') as file:
args = yaml.safe_load(file)
#*******************************************************************************
# File IO
#*******************************************************************************
tb_key = args['base'] + '-' + args['linear'] + '-' + args['key']
flow_file = open("flows/{}".format(tb_key), "rb")
flow = pickle.load(flow_file)
flow.eval()
flow_df = pd.read_csv("data/{}-flow.csv".format(args['key']), header=None)
flow_data = torch.tensor(flow_df.values, dtype=torch.float32)
mcs_df = pd.read_csv("data/{}-mcs.csv".format(args['key']), header=None)
mcs_data = torch.tensor(mcs_df.values, dtype=torch.float32)
#*******************************************************************************
# Create Target Region
#*******************************************************************************
if args['key'] == 'robot':
def generate_cube_corners(x_lim, y_lim, z_lim):
# generate all possible combinations of coordinates
corners = torch.stack(torch.meshgrid(x_lim, y_lim, z_lim), dim=-1)
# reshape to get the corners as rows
corners = corners.reshape(-1, 3)
return corners
# generate the corners of the cube
x_lim1 = torch.tensor([-1.0, -2.0])
y_lim1 = torch.tensor([-2.25, -3.25])
z_lim1 = torch.tensor([1.25, 2.25])
x_in1 = generate_cube_corners(x_lim1, y_lim1, z_lim1)
x_lim2 = torch.tensor([0.75, 1.75])
y_lim2 = torch.tensor([-3.25, -4.25])
z_lim2 = torch.tensor([-1.0, -2.0])
x_in2 = generate_cube_corners(x_lim2, y_lim2, z_lim2)
elif args['key'] == 'racecar':
x = flow_data[:args['subset']]
region1 = lambda x : ((x[:,0] > 0.0) & (x[:,2] > 2.75))
region2 = lambda x : ((x[:,6] < -2.25) & (x[:,0] > 1.5))
mask1 = region1(x)
mask2 = region2(x)
x_in1 = x[mask1]
x_in2 = x[mask2]
elif args['key'] == 'f16':
x = flow_data[:args['subset']]
region1 = lambda x : (x[:,3] > 1.45)
region2 = lambda x : (x[:,10] < -2.45)
mask1 = region1(x)
mask2 = region2(x)
x_in1 = x[mask1]
x_in2 = x[mask2]
sigma1t, mu1t = min_enclosing_ellipsoid(x_in1)
sigma2t, mu2t = min_enclosing_ellipsoid(x_in2)
def target_limit_func(x):
return torch.minimum(
outside_ellipsoid(x, mu1t, sigma1t),
outside_ellipsoid(x, mu2t, sigma2t)
)
#*******************************************************************************
# Approximate Limit Function in Latent Space
#*******************************************************************************
if args['space'] == 'target':
# define limit function
def limit_func(x):
return target_limit_func(x)
elif args['space'] == 'latent':
with torch.no_grad():
u_in1 = flow.transform_to_noise(x_in1)
u_in2 = flow.transform_to_noise(x_in2)
sigma1, mu1 = min_enclosing_ellipsoid(u_in1)
sigma2, mu2 = min_enclosing_ellipsoid(u_in2)
# define limit function
def limit_func(x):
return torch.minimum(
outside_ellipsoid(x, mu1, sigma1),
outside_ellipsoid(x, mu2, sigma2)
)
else:
raise RuntimeError('Incorrect reference frame.')
#*******************************************************************************
# Perform Importance Sampling
#*******************************************************************************
torch.manual_seed(0)
ref_Pf = (target_limit_func(mcs_data) < 0.).sum() / len(mcs_data)
print("\n**********")
print("Ref Pf:\t {:.4f}".format(ref_Pf))
print("**********\n")
# prep for coverage metric
real_samples = mcs_data[(target_limit_func(mcs_data) < 0.)]
if len(real_samples) > args['eval_size']:
real_samples = real_samples[:args['eval_size']]
Pfs = torch.zeros(args['n_trials'])
rel_err = torch.zeros(args['n_trials'])
Ntots = torch.zeros(args['n_trials'])
avg_lps = torch.zeros(args['n_trials'])
densities = torch.zeros(args['n_trials'])
coverages = torch.zeros(args['n_trials'])
for i in range(args['n_trials']):
# perform IS
print('Trial {}'.format(i))
if args['is_method'] == 'ce':
[Pf, (pi, mu, sig), samples] = \
CEIS_GM(args['N'], args['rho'], limit_func, args['features'],
args['K'])
elif args['is_method'] == 'sis':
[Pf, (pi, mu, sig), samples] = \
SIS_GM(args['N'], args['rho'], limit_func, args['features'],
args['K'])
proposal = MixtureSameFamily(
mixture_distribution=Categorical(probs=pi),
component_distribution=MultivariateNormal(mu, sig))
q_samples = proposal.sample((args['eval_size'],))
# compute metrics
if args['space'] == 'latent':
with torch.no_grad():
fake_samples = flow._transform.inverse(q_samples)[0]
else:
fake_samples = q_samples
with torch.no_grad():
avg_lp = flow.log_prob(fake_samples).mean()
Ntot = args['N'] * len(samples)
fake = fake_samples[(target_limit_func(fake_samples) < 0.0)]
prdc_metrics = compute_prdc(real_samples, fake, nearest_k=5)
Pfs[i] = Pf
rel_err[i] = (Pf - ref_Pf) / ref_Pf
avg_lps[i] = avg_lp
densities[i] = prdc_metrics['density']
coverages[i] = prdc_metrics['coverage']
Ntots[i] = Ntot
print("\n********************")
print("Avg Failure Prob: {:.4f}".format(Pfs.mean()))
print("Avg Log Prob: {:.4f}".format(avg_lps.mean()))
print("Avg Density: {:.4f}".format(densities.mean()))
print("Avg Coverage: {:.4f}".format(coverages.mean()))
print("Avg Number of Samples: {:.1f}".format(Ntots.mean()))
print("********************\n")
metrics = {}
metrics['pf mean'] = float(Pfs.mean())
metrics['pf std'] = float(Pfs.std())
metrics['rel err mean'] = float(rel_err.mean())
metrics['rel err std'] = float(rel_err.std())
metrics['avg lp mean'] = float(avg_lps.mean())
metrics['avg lp std'] = float(avg_lps.std())
metrics['coverage mean'] = float(coverages.mean())
metrics['coverage std'] = float(coverages.std())
metrics['density mean'] = float(densities.mean())
metrics['density std'] = float(densities.std())
metrics['Ntot mean'] = float(Ntots.mean())
metrics['Ntot std'] = float(Ntots.std())
metrics['N'] = float(args['N'])
metrics['n_trials'] = float(args['n_trials'])
# save results
with open("results/{}-{}-{}test.json".format(
args['key'], args['is_method'], args['space']), "w") as outfile:
json.dump(metrics, outfile)