-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathVisualize.ml
1136 lines (903 loc) · 33.9 KB
/
Visualize.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
* Copyright (c) 2015 Stefan Krah. All rights reserved.
*
* This file is distributed under the terms of the Q Public License
* version 1.0.
*)
open Printf
let rec xquote = function
| [] -> []
| '\\' :: xs -> '\\' :: '\\' :: xquote xs
| '\n' :: xs -> '\\' :: 'n' :: xquote xs
| '\t' :: xs -> '\\' :: 't' :: xquote xs
| x :: xs -> x :: xquote xs
(*** Convert ParseTree back to re-indented source ***)
module ParseTreePrinter =
struct
open Shared
open ParseTree
let indent ch d = fprintf ch "%*s" d ""
let newline ch d = fprintf ch "\n%a" indent d
let quote s = "\"" ^ Util.implode (xquote (Util.explode s)) ^ "\""
let extra s = String.length s
let exprextra = function
{ pexp_desc = Pexp_path (Pvar_simple (s, _)); _ } -> extra s
| _ -> 0
and mutable_flag = function
Immutable -> ""
| Mutable -> "mutable "
let rec list_single_comma (d : int) (ch : out_channel) f = function
[a] -> f d ch a
| a :: r -> f d ch a; fprintf ch ", "; list_single_comma d ch f r
| [] -> ()
let rec list_single_star (d : int) (ch : out_channel) f = function
[a] -> f d ch a
| a :: r -> f d ch a; fprintf ch " * "; list_single_star d ch f r
| [] -> ()
let rec list_multi_semi d ch f = function
[a] -> f d ch a
| a :: r -> f d ch a; fprintf ch ";\n%a" indent d; list_multi_semi d ch f r
| [] -> ()
let rec module_expr tree =
let (_, Pmod_structure items) = tree in
structure_item_list 0 stdout items;
fprintf stdout "\n\n"
and structure_item_list d ch = function
[a] -> structure_item d ch a
| (Pstr_type [_] as a) :: ((Pstr_type [_]) :: _ as r)
| (Pstr_primitive _ as a) :: ((Pstr_primitive _) :: _ as r) ->
structure_item d ch a; newline ch d;
structure_item_list d ch r
| a :: r -> structure_item d ch a; newline ch d; newline ch d;
structure_item_list d ch r
| [] -> ()
and structure_item d ch = function
Pstr_type [] -> ()
| Pstr_type decs ->
let d = 5 + extra (List.hd decs).ptyp_name + 3 in
fprintf ch "%a" (typedecs "type" d) decs
| Pstr_primitive { pvb_desc = { pvd_name; pvd_type=Some c; _ }; pvb_expr = x } ->
fprintf ch "external %s : %a = %a"
pvd_name
(type_expression d) c
(expression d) x
| Pstr_primitive _ ->
internal_error "invalid external definition"
| Pstr_value (rec_flag, bindings) ->
fprintf ch "%a\n" (value_bindings rec_flag d) bindings
and typedecs prefix d ch = function
[a] -> type_declaration prefix d ch a
| a :: r -> type_declaration prefix d ch a; newline ch d;
typedecs "and" d ch r
| [] -> ()
and type_declaration prefix d ch { ptyp_name; ptyp_params; ptyp_expr; _ } =
fprintf ch "%s %a%s = %a"
prefix
(type_parameter_list d) ptyp_params
ptyp_name
(type_expression_opt_nc d) ptyp_expr
and type_parameter_list d ch lst =
let do_print d ch lst = list_single_comma d ch type_expression lst in
match lst with
| [] -> ()
| [x] -> fprintf ch "%a " (type_expression d) x
| _ -> fprintf ch "(%a) " (do_print d) lst
and type_expression_opt d ch t =
match t with
None -> ()
| Some c -> fprintf ch " : %a" (type_expression d) c
and type_expression_opt_nc d ch t =
match t with
None -> ()
| Some c -> fprintf ch "%a" (type_expression d) c
and type_expression d ch t =
match t.core_type_desc with
Ptyp_any -> fprintf ch "_"
| Ptyp_var s -> fprintf ch "'%s" s
| Ptyp_arrow (a, b) ->
fprintf ch "%a -> %a"
(type_expression d) a
(type_expression d) b
| Ptyp_tuple lst -> fprintf ch "%a" (type_expression_list d) lst
| Ptyp_record lst -> fprintf ch "{ %a }" (field_declaration_list (d+2)) lst
| Ptyp_constr (s, lst) ->
begin match lst with
[] -> fprintf ch "%s" s
| _ -> fprintf ch "%a%s"
(type_parameter_list d) lst
s
end
and type_expression_list d ch lst = list_single_star d ch type_expression lst
and field_declaration_list d ch lst = list_multi_semi d ch field_declaration lst
and field_declaration d ch { pfield_name; pfield_mutable; pfield_type; _ } =
fprintf ch "%s%s : %a"
(mutable_flag pfield_mutable)
pfield_name
(type_expression d) pfield_type
and type_expression_length t =
let count fd =
let buf = Bytes.create 1 in
let rec loop acc =
match Unix.read fd buf 0 1 with
0 -> acc
| 1 -> loop (acc+1)
| _ -> internal_error "unexpected return value"
in loop 0
in
let (in_fd, out_fd) = Unix.pipe () in
let ch = Unix.out_channel_of_descr out_fd in
type_expression 0 ch t;
flush ch;
Unix.close out_fd;
let n = count in_fd in
Unix.close in_fd; n
and valextra v =
match v.pvd_type with
Some c -> extra v.pvd_name + 3 + (type_expression_length c)
| None -> extra v.pvd_name + 3
and type_prologue _ ch t =
match t with
None -> ()
| _ -> fprintf ch "("
and type_epilogue d ch t =
match t with
None -> ()
| Some c -> fprintf ch " : %a)" (type_expression d) c
and value_bindings rec_flag d ch bindings =
match rec_flag with
Recursive -> iter_bindings "let rec" d ch bindings
| Nonrecursive -> iter_bindings "let" d ch bindings
and iter_bindings prefix d ch = function
[a] -> value_binding prefix d ch a
| a :: r -> value_binding prefix d ch a; newline ch d;
iter_bindings "and" d ch r
| [] -> internal_error "empty value binding list"
and value_binding prefix d ch { pvb_desc; pvb_expr } =
let d' = d + 4 + String.length prefix + valextra pvb_desc in
fprintf ch "%s %a = %a"
prefix
(value_description d) pvb_desc
(expression d') pvb_expr
and value_description d ch { pvd_name; pvd_type; _ } =
fprintf ch "%s%a" pvd_name (type_expression_opt d) pvd_type
and value_description_list d ch lst = list_single_comma d ch value_description lst
and expression d ch = function
{ pexp_desc = Pexp_nil; pexp_type; _ } ->
fprintf ch "%anil%a"
(type_prologue d) pexp_type
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_any; pexp_type; _ } ->
fprintf ch "%a_%a"
(type_prologue d) pexp_type
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_bool b; pexp_type; _ } ->
fprintf ch "%a%b%a"
(type_prologue d) pexp_type
b
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_int s; pexp_type; _ } ->
fprintf ch "%a%s%a"
(type_prologue d) pexp_type
s
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_float s; pexp_type; _ } ->
fprintf ch "%a%s%a"
(type_prologue d) pexp_type
s
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_uminus expr; pexp_type; _ } ->
fprintf ch "%a-%a%a"
(type_prologue d) pexp_type
(expression d) expr
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_string s; pexp_type; _ } ->
fprintf ch "%a%s%a"
(type_prologue d) pexp_type
(quote s)
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_path p; pexp_type; _ } ->
fprintf ch "%a%a%a"
(type_prologue d) pexp_type
(path d) p
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_assign (p, op, expr); pexp_type; _ } ->
fprintf ch "%a%a %s %a%a"
(type_prologue d) pexp_type
(path d) p
(assign_op_repr op)
(expression d) expr
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_op (left, operand, right); pexp_type; _ } ->
fprintf ch "%a%a %s %a%a"
(type_prologue d) pexp_type
(expression d) left
(op_repr operand)
(expression d) right
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_call (expr, arg); pexp_type; _ } ->
let d' = d + exprextra expr + 1 in
fprintf ch "%a%a(%a)%a"
(type_prologue d) pexp_type
(fix_deref d) expr
(expression d') arg
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_record assignment_list; pexp_type; _ } ->
fprintf ch "%a{ %a }%a"
(type_prologue d) pexp_type
(field_assignments (d+2)) assignment_list
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_array (size, init); pexp_type; _ } ->
fprintf ch "%a[%a] ** (%a)%a"
(type_prologue d) pexp_type
(expression d) init
(expression d) size
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_if (test, expr, None); pexp_type; _ } ->
let d' = d + extra "then " in
fprintf ch "%aif %a\n%athen %a%a"
(type_prologue d) pexp_type
(expression d) test
indent d
(expression d') expr
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_if (test, then_expr, Some else_expr); pexp_type; _ } ->
let d' = d + extra "then " in
fprintf ch "%aif %a\n%athen %a\n%aelse %a%a"
(type_prologue d) pexp_type
(expression d) test
indent d
(expression d') then_expr
indent d
(expression d') else_expr
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_while (test, body); pexp_type; _ } ->
let d' = d + 2 in
fprintf ch "%awhile (%a) do\n%a%a\n%adone%a"
(type_prologue d) pexp_type
(expression d) test
indent d'
(expression d') body
indent d
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_for ([loop_var], hi, body); pexp_type; _ } ->
let d' = d + 2 in
fprintf ch "%afor %s = %a to %a do\n%a%a\n%adone%a"
(type_prologue d) pexp_type
loop_var.pvb_desc.pvd_name
(expression d) loop_var.pvb_expr
(expression d) hi
indent d'
(expression d') body
indent d
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_for (_, _, _); _ } ->
internal_error "invalid for expression"
| { pexp_desc = Pexp_tuple lst; pexp_type; _ } ->
fprintf ch "(%a%a%a)"
(type_prologue d) pexp_type
(expression_list_comma d) lst
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_sequence []; pexp_type; _ } ->
fprintf ch "%a()%a"
(type_prologue d) pexp_type
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_sequence lst; pexp_type; _ } ->
let d, o, c = match lst with
_::_::_ -> d+1, "(", ")"
| _ -> d, "", "" in
fprintf ch "%s%a%a%a%s" o
(type_prologue d) pexp_type
(expression_list_semi d) lst
(type_epilogue d) pexp_type c
| { pexp_desc = Pexp_let (_, [], _); _ } ->
internal_error "let: empty value binding list"
| { pexp_desc = Pexp_let (rec_flag, bindings, body); pexp_type; _ } ->
fprintf ch "%a%a in\n%a%a%a"
(type_prologue d) pexp_type
(value_bindings rec_flag d) bindings
indent d
(expression d) body
(type_epilogue d) pexp_type
| { pexp_desc = Pexp_lambda l; pexp_type; _ } ->
fprintf ch "%a%a%a"
(type_prologue d) pexp_type
(lambda_expression d) l
(type_epilogue d) pexp_type
and fix_deref d ch x =
match x.pexp_desc with
Pexp_path (Pvar_simple ("(!)", _)) -> fprintf ch "!"
| _ -> expression d ch x; fprintf ch " "
and path d ch = function
Pvar_simple (s, _) ->
fprintf ch "%s" s
| Pvar_field (var, s, _) ->
fprintf ch "%a.%s"
(path d) var
s
| Pvar_subscript (var, expr, _) ->
fprintf ch "%a.(%a)"
(path d) var
(expression d) expr
and lambda_expression d ch { pfun_params; pfun_body; _ } =
let d' = d+2 in
fprintf ch "fun (%a) -> \n%a%a"
(value_description_list d) pfun_params
indent d'
(expression d') pfun_body
and expression_list_comma d ch lst = list_single_comma d ch expression lst
and expression_list_semi d ch lst = list_multi_semi d ch expression lst
and field_assign d ch (s, expr) =
fprintf ch "%s = %a"
s
(expression d) expr
and field_assignments d ch lst = list_multi_semi d ch field_assign lst
let indent = module_expr
end
(*** Convert Ast back to re-indented source ***)
module AstPrinter (ModuleState : ModuleState.S)=
struct
open Shared
open Types
open Ast
open ModuleState
module Unify = Unify.Make(ModuleState)
let indent ch d = fprintf ch "%*s" d ""
let newline ch d = fprintf ch "\n%a" indent d
let add_space s = match s with "" -> "" | _ -> s ^ " "
let quote s = "\"" ^ Util.implode (xquote (Util.explode s)) ^ "\""
let extra s = String.length s
let vsym id = ValueID.name id
let id_extra id = String.length (vsym id)
let exprextra = function
{ aexp_desc = Aexp_path (Avar_simple (id, _, _)); _ } -> id_extra id
| _ -> 0
let rec list_single_comma (d : int) (ch : out_channel) f = function
[a] -> f d ch a
| a :: r -> f d ch a; fprintf ch ", "; list_single_comma d ch f r
| [] -> ()
let rec list_multi_semi d ch f = function
[a] -> f d ch a
| a :: r -> f d ch a; fprintf ch ";\n%a" indent d; list_multi_semi d ch f r
| [] -> ()
let rec module_expr tree =
let (_, Amod_structure decls) = tree in
structure_item_list 0 stdout decls;
fprintf stdout "\n\n"
and structure_item_list d ch = function
[a] -> structure_item d ch a
| (Astr_type [_] as a) :: ((Astr_type [_]) :: _ as r)
| (Astr_primitive _ as a) :: ((Astr_primitive _) :: _ as r) ->
structure_item d ch a; newline ch d;
structure_item_list d ch r
| a :: r -> structure_item d ch a; newline ch d; newline ch d;
structure_item_list d ch r
| [] -> ()
and structure_item d ch = function
| Astr_type [] -> ()
| Astr_type decs ->
let d = 5 + id_extra (List.hd decs).atyp_id + 3 in
fprintf ch "%a" (typedecs "type" d) decs
| Astr_primitive { avb_desc = { avd_id; _ }; avb_expr = x } ->
let tfun = TyconTable.really_find avd_id in
fprintf ch "external %s : %s = %a"
(vsym avd_id)
(Unify.repr (Tapp (tfun, [])))
(expression d) x
| Astr_value (rec_flag, bindings) ->
fprintf ch "%a\n" (value_bindings rec_flag d) bindings
and typedecs prefix d ch = function
[a] -> type_declaration prefix d ch a
| a :: r -> type_declaration prefix d ch a; newline ch d;
typedecs "and" d ch r
| [] -> internal_error "empty value binding list"
and type_declaration prefix _ ch { atyp_id; _ } =
let tfun = TyconTable.really_find atyp_id in
let params, body = Unify.tfun_repr tfun in
fprintf ch "%s %s%s = %s"
prefix (add_space params) (Tycon.name atyp_id) body
and valextra v =
match v.avd_constraint with
Some c -> id_extra v.avd_id + 3 + (extra (Unify.repr c))
| None -> id_extra v.avd_id + 3
and type_expression_opt _ ch t =
match t with
None -> ()
| Some c -> fprintf ch " : %s" (Unify.repr c)
and type_prologue _ ch t =
match t with
None -> ()
| _ -> fprintf ch "("
and type_epilogue _ ch t =
match t with
None -> ()
| Some c -> fprintf ch " : %s" (Unify.repr c)
and expression d ch = function
{ aexp_desc = Aexp_nil; aexp_type; _ } ->
fprintf ch "%anil%a"
(type_prologue d) aexp_type
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_any; aexp_type; _ } ->
fprintf ch "%a_%a"
(type_prologue d) aexp_type
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_bool b; aexp_type; _ } ->
fprintf ch "%a%b%a"
(type_prologue d) aexp_type
b
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_int s; aexp_type; _ } ->
fprintf ch "%a%s%a"
(type_prologue d) aexp_type
(Int64.to_string s)
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_float s; aexp_type; _ } ->
fprintf ch "%a%s%a"
(type_prologue d) aexp_type
(string_of_float s)
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_uminus expr; aexp_type; _ } ->
fprintf ch "%a-%a%a"
(type_prologue d) aexp_type
(expression d) expr
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_string s; aexp_type; _ } ->
fprintf ch "%a%s%a"
(type_prologue d) aexp_type
(quote s)
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_path p; aexp_type; _ } ->
fprintf ch "%a%a%a"
(type_prologue d) aexp_type
(path d) p
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_assign (p, op, expr); aexp_type; _ } ->
fprintf ch "%a%a %s %a%a"
(type_prologue d) aexp_type
(path d) p
(assign_op_repr op)
(expression d) expr
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_op (left, operand, right); aexp_type; _ } ->
fprintf ch "%a%a %s %a%a"
(type_prologue d) aexp_type
(expression d) left
(op_repr operand)
(expression d) right
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_call (expr, arg); aexp_type; _ } ->
let d' = d + exprextra expr + 1 in
fprintf ch "%a%a(%a)%a"
(type_prologue d) aexp_type
(fix_deref d) expr
(expression d') arg
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_record assignment_list; aexp_type; _ } ->
fprintf ch "%a{ %a }%a"
(type_prologue d) aexp_type
(field_assignments (d+2)) assignment_list
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_array (size, init); aexp_type; _ } ->
fprintf ch "%a[%a] ** (%a)%a"
(type_prologue d) aexp_type
(expression d) init
(expression d) size
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_if (test, expr, None); aexp_type; _ } ->
let d' = d + extra "then " in
fprintf ch "%aif %a\n%athen %a%a"
(type_prologue d) aexp_type
(expression d) test
indent d
(expression d') expr
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_if (test, then_expr, Some else_expr); aexp_type; _ } ->
let d' = d + extra "then " in
fprintf ch "%aif %a\n%athen %a\n%aelse %a%a"
(type_prologue d) aexp_type
(expression d) test
indent d
(expression d') then_expr
indent d
(expression d') else_expr
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_while (test, body); aexp_type; _ } ->
let d' = d + 2 in
fprintf ch "%awhile (%a) do\n%a%a\n%adone%a"
(type_prologue d) aexp_type
(expression d) test
indent d'
(expression d') body
indent d
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_for ([loop_var], hi, body); aexp_type; _ } ->
let d' = d + 2 in
fprintf ch "%afor %s = %a to %a do\n%a%a\n%adone%a"
(type_prologue d) aexp_type
(vsym loop_var.avb_desc.avd_id)
(expression d) loop_var.avb_expr
(expression d) hi
indent d'
(expression d') body
indent d
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_for (_, _, _); _ } ->
internal_error "invalid for expression"
| { aexp_desc = Aexp_tuple lst; aexp_type; _ } ->
fprintf ch "%a(%a)%a"
(type_prologue d) aexp_type
(expression_list_comma d) lst
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_sequence []; aexp_type; _ } ->
fprintf ch "%a()%a"
(type_prologue d) aexp_type
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_sequence lst; aexp_type; _ } ->
let d, o, c = match lst with
_::_::_ -> d+1, "(", ")"
| _ -> d, "", "" in
fprintf ch "%s%a%a%a%s" o
(type_prologue d) aexp_type
(expression_list_semi d) lst
(type_epilogue d) aexp_type c
| { aexp_desc = Aexp_let (_, [], _); _ } ->
internal_error "let: empty value binding list"
| { aexp_desc = Aexp_let (rec_flag, bindings, body); aexp_type; _ } ->
fprintf ch "%a%a in\n%a%a%a"
(type_prologue d) aexp_type
(value_bindings rec_flag d) bindings
indent d
(expression d) body
(type_epilogue d) aexp_type
| { aexp_desc = Aexp_lambda l; aexp_type; _ } ->
fprintf ch "%a%a%a"
(type_prologue d) aexp_type
(lambda_expression d) l
(type_epilogue d) aexp_type
and fix_deref d ch x =
match x.aexp_desc with
Aexp_path (Avar_simple (id, _, _)) when vsym id = "(!)" ->
fprintf ch "!"
| _ -> expression d ch x; fprintf ch " "
and path d ch = function
Avar_simple (id, _, _) ->
fprintf ch "%s" (vsym id)
| Avar_field (p, id, _) ->
fprintf ch "%a.%s"
(path d) p
(Tyfield.name id)
| Avar_subscript (p, expr, _) ->
fprintf ch "%a.(%a)"
(path d) p
(expression d) expr
and value_bindings rec_flag d ch bindings =
match rec_flag with
Recursive -> iter_bindings "let rec" d ch bindings
| Nonrecursive -> iter_bindings "let" d ch bindings
and iter_bindings prefix d ch = function
[a] -> value_binding prefix d ch a
| a :: r -> value_binding prefix d ch a; newline ch d;
iter_bindings "and" d ch r
| [] -> internal_error "empty value binding list"
and value_binding prefix d ch { avb_desc; avb_expr } =
let d' = d + 1 + String.length prefix + valextra avb_desc in
fprintf ch "%s %a = %a"
prefix
(value_description d) avb_desc
(expression d') avb_expr
and value_description d ch { avd_id=id; avd_constraint=c; _ } =
fprintf ch "%s%a" (vsym id) (type_expression_opt d) c
and lambda_expression d ch { afun_params; afun_body; _ } =
let d' = d+2 in
fprintf ch "fun (%a) -> \n%a%a"
(value_description_list d) afun_params
indent d'
(expression d') afun_body
and expression_list_comma d ch lst = list_single_comma d ch expression lst
and expression_list_semi d ch lst = list_multi_semi d ch expression lst
and value_description_list d ch lst = list_single_comma d ch value_description lst
and field_assign d ch (id, expr) =
fprintf ch "%s = %a" (Tyfield.name id) (expression d) expr
and field_assignments d ch lst = list_multi_semi d ch field_assign lst
let indent = module_expr
end
(*** Convert Typedtree back to re-indented source ***)
module TypedtreePrinter (ModuleState : ModuleState.S)
(Options : sig val closure : bool val fullname : bool end) =
struct
open Shared
open Types
open Typedtree
open ModuleState
module Unify = Unify.Make(ModuleState)
let closure = Options.closure
let fullname = Options.fullname
let indent ch d = fprintf ch "%*s" d ""
let newline ch d = fprintf ch "\n%a" indent d
let add_space s = match s with "" -> "" | _ -> s ^ " "
let quote s = "\"" ^ Util.implode (xquote (Util.explode s)) ^ "\""
let extra s = String.length s
let vsym id =
match (ValueTable.really_find id).value_kind with
External -> ValueID.name id
| _ -> ValueID.short_repr id
let id_extra id = String.length (vsym id)
let pathextra = function
{ tpath_desc = (Tvar_simple (id, _)); _ } -> id_extra id
| _ -> 0
let exprextra = function
{ texp_desc = Texp_path path; _ } -> pathextra path
| _ -> 0
let rec list_single_comma (d : int) (ch : out_channel) f = function
[a] -> f d ch a
| a :: r -> f d ch a; fprintf ch ", "; list_single_comma d ch f r
| [] -> ()
let rec list_multi_semi d ch f = function
[a] -> f d ch a
| a :: r -> f d ch a; fprintf ch ";\n%a" indent d; list_multi_semi d ch f r
| [] -> ()
let rec module_expr tree =
let (_, Tmod_structure decls) = tree in
structure_item_list 0 stdout decls;
fprintf stdout "\n\n"
and structure_item_list d ch = function
[a] -> structure_item d ch a
| (Tstr_type [_] as a) :: ((Tstr_type [_]) :: _ as r)
| (Tstr_primitive _ as a) :: ((Tstr_primitive _) :: _ as r) ->
structure_item d ch a; newline ch d;
structure_item_list d ch r
| a :: r -> structure_item d ch a; newline ch d; newline ch d;
structure_item_list d ch r
| [] -> ()
and structure_item d ch = function
| Tstr_type [] -> ()
| Tstr_type decs ->
let d = 5 + id_extra (List.hd decs).ttyp_id + 3 in
fprintf ch "%a" (typedecs "type" d) decs
| Tstr_primitive { tvb_desc = { tvd_id; _ }; tvb_expr = x } ->
let tfun = TyconTable.really_find tvd_id in
fprintf ch "external %s : %s = %a"
(vsym tvd_id)
(Unify.repr ~closure ~fullname (Tapp (tfun, [])))
(expression d) x
| Tstr_value (rec_flag, bindings) ->
fprintf ch "%a\n" (value_bindings rec_flag d) bindings
| Tstr_function [] -> ()
| Tstr_function funcs ->
fprintf ch "%a" (function_definitions "let rec" d) funcs
and typedecs prefix d ch = function
[a] -> type_declaration prefix d ch a
| a :: r -> type_declaration prefix d ch a; newline ch d;
typedecs "and" d ch r
| [] -> internal_error "empty value binding list"
and type_declaration prefix _ ch { ttyp_id; _ } =
let tfun = TyconTable.really_find ttyp_id in
let params, body = Unify.tfun_repr ~closure ~fullname tfun in
fprintf ch "%s %s%s = %s"
prefix (add_space params) (Tycon.name ttyp_id) body
and valextra v = id_extra v.tvd_id + 3 + (extra (Unify.short_repr ~closure ~fullname v.tvd_type))
and type_prologue _ ch _ = fprintf ch "("
and type_epilogue _ ch t = fprintf ch " : %s)" (Unify.short_repr ~closure ~fullname t)
and expression d ch = function
{ texp_desc = Texp_undef; texp_type; _ } ->
fprintf ch "%aundef%a"
(type_prologue d) texp_type
(type_epilogue d) texp_type
| { texp_desc = Texp_nil; texp_type; _ } ->
fprintf ch "%anil%a"
(type_prologue d) texp_type
(type_epilogue d) texp_type
| { texp_desc = Texp_any; texp_type; _ } ->
fprintf ch "%a_%a"
(type_prologue d) texp_type
(type_epilogue d) texp_type
| { texp_desc = Texp_bool b; texp_type; _ } ->
fprintf ch "%a%b%a"
(type_prologue d) texp_type
b
(type_epilogue d) texp_type
| { texp_desc = Texp_int s; texp_type; _ } ->
fprintf ch "%a%s%a"
(type_prologue d) texp_type
(Int64.to_string s)
(type_epilogue d) texp_type
| { texp_desc = Texp_float s; texp_type; _ } ->
fprintf ch "%a%s%a"
(type_prologue d) texp_type
(string_of_float s)
(type_epilogue d) texp_type
| { texp_desc = Texp_uminus expr; texp_type; _ } ->
fprintf ch "%a-%a%a"
(type_prologue d) texp_type
(expression d) expr
(type_epilogue d) texp_type
| { texp_desc = Texp_string s; texp_type; _ } ->
fprintf ch "%a%s%a"
(type_prologue d) texp_type
(quote s)
(type_epilogue d) texp_type
| { texp_desc = Texp_path p; texp_type; _ } ->
fprintf ch "%a%a%a"
(type_prologue d) texp_type
(path d) p
(type_epilogue d) texp_type
| { texp_desc = Texp_assign (p, op, expr); texp_type; _ } ->
fprintf ch "%a%a %s %a%a"
(type_prologue d) texp_type
(path d) p
(assign_op_repr op)
(expression d) expr
(type_epilogue d) texp_type
| { texp_desc = Texp_op (left, operand, right); texp_type; _ } ->
fprintf ch "%a%a %s %a%a"
(type_prologue d) texp_type
(expression d) left
(op_repr operand)
(expression d) right
(type_epilogue d) texp_type
| { texp_desc = Texp_call (expr, arg); texp_type; _ } ->
let d' = d + exprextra expr + 1 in
fprintf ch "%a%a(%a)%a"
(type_prologue d) texp_type
(fix_deref d) expr
(expression d') arg
(type_epilogue d) texp_type
| { texp_desc = Texp_ccall (p, arg); texp_type; _ } ->
let d' = d + pathextra p + 1 + extra "apply" in
fprintf ch "%a%a#apply %a%a"
(type_prologue d) texp_type
(path d) p
(expression d') arg
(type_epilogue d) texp_type
| { texp_desc = Texp_record assignment_list; texp_type; _ } ->
fprintf ch "%a{ %a }%a"
(type_prologue d) texp_type
(field_assignments (d+2)) assignment_list
(type_epilogue d) texp_type
| { texp_desc = Texp_array (size, init); texp_type; _ } ->
fprintf ch "%a[%a] ** (%a)%a"
(type_prologue d) texp_type
(expression d) init
(expression d) size
(type_epilogue d) texp_type
| { texp_desc = Texp_ifthen (test, expr); texp_type; _ } ->
let d' = d + extra "then " in
fprintf ch "%aif %a\n%athen %a%a"
(type_prologue d) texp_type
(expression d) test
indent d
(expression d') expr
(type_epilogue d) texp_type
| { texp_desc = Texp_ifthenelse (test, then_expr, else_expr); texp_type; _ } ->
let d' = d + extra "then " in
fprintf ch "%aif %a\n%athen %a\n%aelse %a%a"
(type_prologue d) texp_type
(expression d) test
indent d
(expression d') then_expr
indent d
(expression d') else_expr
(type_epilogue d) texp_type
| { texp_desc = Texp_while (test, body); texp_type; _ } ->
let d' = d + 2 in
fprintf ch "%awhile (%a) do\n%a%a\n%adone%a"
(type_prologue d) texp_type
(expression d) test
indent d'
(expression d') body
indent d
(type_epilogue d) texp_type
| { texp_desc = Texp_for ([loop_var], hi, body); texp_type; _ } ->
let d' = d + 2 in
fprintf ch "%afor %s = %a to %a do\n%a%a\n%adone%a"
(type_prologue d) texp_type
(vsym loop_var.tvb_desc.tvd_id)
(expression d) loop_var.tvb_expr
(expression d) hi
indent d'
(expression d') body
indent d
(type_epilogue d) texp_type