-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiris_selfclassifier.py
executable file
·58 lines (38 loc) · 1.27 KB
/
iris_selfclassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import random
from scipy.spatial import distance
def euc(a,b):
return distance.euclidean(a,b)
#self written classifier
class ScappyKNN():
def fit(self, X_train, y_train):
self.X_train = X_train
self.y_train = y_train
def predict(self, X_test):
predictions = []
for row in X_test:
label = self.closest(row)
predictions.append(label)
return predictions
def closest(self, row):
best_dist = euc(row,self.X_train[0])
best_index = 0
for i in range(1, len(self.X_train)):
dist = euc (row, self.X_train[i])
if dist < best_dist:
best_dist = dist
best_index = i
return self.y_train[best_index]
from sklearn import datasets
iris = datasets.load_iris()
x = iris.data
y = iris.target
from sklearn.cross_validation import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = .5)
# from sklearn import tree
# my_classifier = tree.DecisionTreeClassifier()
# from sklearn.neighbors import KNeighborsClassifier
my_classifier = ScappyKNN()
my_classifier.fit(x_train,y_train)
predictions = my_classifier.predict(x_test)
from sklearn.metrics import accuracy_score
print accuracy_score(y_test, predictions)