-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshared_test_generators.py
526 lines (453 loc) · 22.2 KB
/
shared_test_generators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
"""
Basic generators that the tests will use to ensure the components work
"""
import numpy as np
import tvm
from tvm import relay
import random
from expr_constructor import ExprConstructor, PatternConstructor
from op_info import (ALL_BROADCASTING_OPS, ALL_IDENTITY_OPS,
ALL_NONSCALAR_OPS, BatchNormInfo, BatchMatmulInfo, Conv2DInfo)
from relation_solver import MemoizedSolver, ILPSolver, BruteForceSolver, ProfiledSolver
from scope import VarScope
from type_constructor import TypeConstructs as TC
from type_constructor import TypeConstructor
from type_utils import (instantiate, get_instantiated_constructors, attempt_unify, partially_instantiate_func)
MAX_DIM = 5
MAX_ARITY = 5
MAX_PATTERN_ATTEMPTS = 4
class FuelDriver:
def __init__(self, fuel):
self.fuel = fuel
def decrease_fuel(self):
if self.fuel > 0:
self.fuel -= 1
class TestTypeGenerator(FuelDriver):
def __init__(self, prelude, fuel=10, max_arity=MAX_ARITY, max_dim=MAX_DIM):
super().__init__(fuel)
self.max_arity = max_arity
self.max_dim = max_dim
self.types_generated = []
# mutual recursion!
self.ctor = TypeConstructor(prelude,
self.choose_construct,
self.choose_func_arity,
self.choose_tuple_arity,
self.choose_adt_handle,
self.generate_dtype,
self.generate_shape,
generate_type=self.generate_type)
def generate_type(self):
self.decrease_fuel()
if self.fuel == 0 and len(self.types_generated) != 0:
return random.choice(self.types_generated)
ret = self.ctor.construct_type()
self.types_generated.append(ret)
return ret
def choose_construct(self, available_constructs):
self.decrease_fuel()
return random.choice(available_constructs)
def choose_tuple_arity(self, min_arity):
self.decrease_fuel()
if self.fuel == 0:
return min_arity
return random.randint(min_arity, max(min_arity, self.max_arity))
def choose_func_arity(self):
self.decrease_fuel()
if self.fuel == 0:
return 0
return random.randint(0, self.max_arity)
def choose_adt_handle(self, available_handles):
self.decrease_fuel()
return random.choice(available_handles)
def generate_dtype(self):
self.decrease_fuel()
return random.choice(["float32", "float64", "int8", "bool"])
def generate_shape(self):
self.decrease_fuel()
if self.fuel == 0:
return []
arity = random.randint(0, self.max_arity)
return [random.randint(1, self.max_dim) for i in range(arity)]
class TestPatternGenerator(FuelDriver):
def __init__(self, var_scope, prelude, fuel=10, pattern_attempts=MAX_PATTERN_ATTEMPTS):
super().__init__(fuel)
self.p = prelude
self.pat_ctor = PatternConstructor(var_scope, self.generate_pattern, self.choose_ctor)
self.pattern_attempts = pattern_attempts
def generate_patterns(self, input_type):
# to guarantee completeness, just put a wildcard at the end
# (if we want to be less boring, we could do a check for completeness, but it's complicated)
ret = []
for i in range(self.pattern_attempts):
ret.append(self.generate_pattern(input_type))
# random chance of stopping early
if random.random() < 0.3:
break
ret.append(relay.PatternWildcard())
return ret
def generate_pattern(self, input_type):
self.decrease_fuel()
# we can always have a wildcard or var pattern
if not isinstance(input_type, (relay.TupleType, relay.TypeCall)) or self.fuel == 0:
return random.choice([
relay.PatternWildcard(),
self.pat_ctor.construct_var_pattern(input_type)
])
# now we can choose between a wildcard, var, and either a ctor pattern or a tuple pattern depending on type
choice = random.randint(0, 2)
if choice == 0:
return relay.PatternWildcard()
elif choice == 1:
return self.pat_ctor.construct_var_pattern(input_type)
if isinstance(input_type, relay.TupleType):
return self.pat_ctor.construct_tuple_pattern(input_type)
return self.pat_ctor.construct_ctor_pattern(input_type)
def choose_ctor(self, input_type):
self.decrease_fuel()
assert isinstance(input_type, relay.TypeCall)
ctors = get_instantiated_constructors(self.p, input_type)
# if we don't pick an argument-free constructor eventually,
# we can have an infinite loop
if self.fuel == 0:
for ctor, ft in ctors:
if len(ft.arg_types) == 0:
return ctor, ft
return random.choice(ctors)
class TestExprGenerator(FuelDriver):
def __init__(self, prelude, conf=None):
self.config = validate_config(conf)
super().__init__(self.config.fuel)
self.prelude = prelude
self.var_scope = VarScope("gen_var")
for gv in prelude.mod.get_global_vars():
# not all global vars checked types are populated
# and there is no way to check besides this...
# "main" causes problems if we are overwriting it in the fuzzer
# (we may change its type)
if self.config.exclude_main and gv.name_hint == "main":
continue
try:
self.var_scope.add_to_global_scope(gv, gv.checked_type)
except:
continue
# (eventually we should factor out dispatching operators)
# operators that can return any tensor
self.basic_tensor_ops = self.config.basic_tensor_ops
# operators that can return any nonscalar tensor
self.all_nonscalar_ops = self.config.all_nonscalar_ops
# batch matmul returns a tensor of rank exactly 3,
# and it's probably not the only one
self.rank_3_ops = self.config.rank_3_ops
# ditto conv2d for rank 4
self.rank_4_ops = self.config.rank_4_ops
self.batch_norm_info = self.config.batch_norm_info
# convenient for forward solving
self.all_ops = self.config.all_ops
# mapping of type hashes -> arg types, additional params, op_info
# to produce a call if the appropriate type comes up
self.use_forward_solver = not self.config.use_forward_sampling
self.forward_queue = {}
self.expr_ctor = ExprConstructor(
self.var_scope, self.generate_expr, self.generate_type, self.choose_ctor,
self.generate_patterns, self.generate_op)
# eventually we'll want to configure these
self.literal_chance = 0.3
self.local_var_chance = 0.3
self.global_var_chance = 0.05
self.ref_write_chance = 0.05
# operators are more fun so we will want those to happen more often
self.operator_chance = 0.25
# may need to fiddle with it so as not to skew too much
self.forward_solving_chance = 0.5
# another option: always use the forward queue but destroy it so we don't become overly reliant on it
self.use_forward_queue_chance = 0.5
def set_seed(self, seed):
self.config.reset_seed(seed)
def get_solver_profile(self):
return self.config.get_solver_profile()
def generate_type(self, gen_params=None):
gen = self.config.produce_type_generator(self.prelude)
if gen_params is None:
# if we're free to do as we like, let's forward-solve
if (self.config.use_forward_solving and random.random() < self.forward_solving_chance):
return self.forward_solve()
return gen.generate_type()
# TODO: Fix the interface for generate type
return gen.ctor.construct_type(gen_params=gen_params)
def forward_solve(self):
# pick an operator, solve for its types, and put it in the queue for the next time the type comes up
op_info = random.choice(self.all_ops)
arg_types, ret_type, params = op_info.sample_call(
use_solver=self.use_forward_solver)
# terrible hack
ty_hash = tvm.ir.structural_hash(ret_type)
self.forward_queue[ty_hash] = arg_types, params, op_info
return ret_type
def hit_forward_queue(self, ty):
if not self.config.use_forward_solving:
return False
if not self.has_available_op_calls(ty):
return False
ty_hash = tvm.ir.structural_hash(ty)
return ty_hash in self.forward_queue
def choose_ctor(self, type_call):
# passing our fuel here because there is the potential
# for constructing infinitely deep ADT literals
# if we don't force termination this way
gen = self.config.produce_pattern_generator(self.var_scope, self.prelude, fuel=self.fuel)
return gen.choose_ctor(type_call)
def has_available_op_calls(self, ty):
# types supported by op calls: tensor types or tuple of a tensor and 2 vectors;
# this is more efficient than naively looping through all the types
if isinstance(ty, relay.TensorType):
return True
# batch norm
if isinstance(ty, relay.TupleType):
return self.batch_norm_info.supports_return_type(ty)
return False
def supported_ops(self, ty):
ret = []
if isinstance(ty, relay.TensorType):
ret = self.basic_tensor_ops
if len(ty.shape) != 0:
ret = self.all_nonscalar_ops
# batch matmul works for a rank of exactly 3
if len(ty.shape) == 3:
ret = self.rank_3_ops
# conv2d works for a rank of exactly 4
if len(ty.shape) == 4:
ret = self.rank_4_ops
# taking a shortcut for now
if isinstance(ty, relay.TupleType):
ret = [self.batch_norm_info]
assert len(ret) != 0
return ret
def generate_patterns(self, ty):
return TestPatternGenerator(self.var_scope, self.prelude).generate_patterns(ty)
def generate_op(self, ty):
if (self.hit_forward_queue(ty)
# if we don't permit backward solving,
# we MUST use the forward queue
and (not self.config.use_backward_solving
or random.random() < self.use_forward_queue_chance)):
ty_hash = tvm.ir.structural_hash(ty)
_, _, op_info = self.forward_queue[ty_hash]
return op_info
return random.choice(self.supported_ops(ty))
def generate_literal(self, ty, own_name=None):
# if we have a variable in scope of this type, pick that instead
if random.random() < self.local_var_chance:
local_scope = self.var_scope.get_local_scope()
appropriate_type = [v for v in local_scope if v.type_annotation == ty]
if len(appropriate_type) != 0:
return random.choice(appropriate_type)
if isinstance(ty, relay.FuncType) and random.random() < self.global_var_chance:
global_scope = self.var_scope.get_global_scope()
global_choices = []
for gv, gv_ty in global_scope.items():
success, _ = attempt_unify(ty, gv_ty)
if success:
global_choices.append(gv)
if len(global_choices) != 0:
return random.choice(global_choices)
if isinstance(ty, relay.TensorType):
# numpy doesn't handle floats the same as tensors
dtype = ty.dtype
if len(ty.shape) == 0:
if dtype.startswith("float"):
return relay.const(random.random(), dtype=dtype)
if dtype.startswith("bool"):
return relay.const(True, dtype=dtype)
return relay.const(random.randint(0, 10), dtype=dtype)
# numpy doesn't like TVM shapes
conc_shape = [int(s) for s in ty.shape]
return relay.const(np.random.rand(*conc_shape).astype(dtype), dtype=dtype)
if isinstance(ty, relay.TupleType):
return self.expr_ctor.construct_tuple_literal(ty.fields)
if isinstance(ty, relay.FuncType):
return self.expr_ctor.construct_func_literal(ty.arg_types, ty.ret_type, own_name=own_name)
if isinstance(ty, relay.RefType):
return self.expr_ctor.construct_ref_literal(ty.value)
if isinstance(ty, relay.TypeCall):
return self.expr_ctor.construct_adt_literal(ty)
raise TypeError("Unrecognized type")
def generate_global_call(self, ty):
global_scope = self.var_scope.get_global_scope()
global_choices = []
for gv, gv_ty in global_scope.items():
success, ft = partially_instantiate_func(gv_ty, ty)
if not success:
continue
global_choices.append((gv, ft))
if len(global_choices) == 0:
return False, None
gv, ft = random.choice(global_choices)
# instantiate any remaining type vars
instantiation_map = [
(tv, self.generate_type())
for tv in ft.type_params
]
strip_ft = relay.FuncType(ft.arg_types, ft.ret_type)
inst_ft = instantiate(strip_ft, instantiation_map)
return True, relay.Call(gv, [
self.generate_expr(arg_ty)
for arg_ty in inst_ft.arg_types
])
def generate_forward_call(self, ty):
# take a call out of the forward queue!
ty_hash = tvm.ir.structural_hash(ty)
arg_types, params, op_info = self.forward_queue[ty_hash]
return op_info.produce_call([
self.generate_expr(arg_ty)
for arg_ty in arg_types
], additional_params=params)
def generate_connective(self, ty):
# see if we can get a global function with the right return type
if random.random() < self.global_var_chance:
success, call = self.generate_global_call(ty)
if success:
return call
choices = [
lambda: self.expr_ctor.construct_ref_read(ty),
lambda: self.expr_ctor.construct_function_call(ty),
lambda: self.expr_ctor.construct_match(ty),
lambda: self.expr_ctor.construct_if_branch(ty),
lambda: self.expr_ctor.construct_tuple_index(ty, random.randint(0, self.config.max_arity-1)),
lambda: self.expr_ctor.construct_let_expr(ty)
]
# constructs available only for some types
if ty == relay.TupleType([]) and random.random() < self.ref_write_chance:
choices.append(self.expr_ctor.construct_ref_write)
if (self.has_available_op_calls(ty)
# have to produce a valid op call either
# by backward solving or checking the forward queue
and (self.config.use_backward_solving or self.hit_forward_queue(ty))):
# dumb way of skewing the choice
if random.random() < self.operator_chance:
return self.expr_ctor.construct_op_call(ty)
choices.append(lambda: self.expr_ctor.construct_op_call(ty))
thunk = random.choice(choices)
return thunk()
def generate_expr(self, ty, own_name=None):
self.decrease_fuel()
if self.fuel == 0:
return self.generate_literal(ty, own_name=own_name)
if (self.hit_forward_queue(ty)
and random.random() < self.use_forward_queue_chance):
return self.generate_forward_call(ty)
if random.random() < self.literal_chance:
return self.generate_literal(ty, own_name=own_name)
return self.generate_connective(ty)
def validate_config(config):
"""
Rudimentary mechanism for setting up a config object for the above test fuzzer
If the config is None or is missing settings, this will populate them with defaults
A configuration should be a dict containing some (or none) of the following fields:
"max_dim": Largest dimension in any tensor shape (default: 5, real ones can be much larger)
"max_arity": Max rank for tensor and max arity for tuples (default: 5)
TODO: Decouple the separate settings
"max_pattern_attempts": Number of patterns the pattern generator will attempt to produce (default: 4)
"solver_timeout": Seconds until the ILP solver should time out (default: 30)
If the solver is timing out at 30s, that's probably a bad sign
"use_ilp": Whether to use the ILP solver; uses brute force if not (default: True)
"memoize_solver": Whether to memoize solver results (default: True)
"set_seed": Whether to set the random seed (default: False)
"seed": The value for the random seed, if set to use (default: 0)
"exclude_main": Whether to exclude the "main" variable from appearing in a generated expression.
This can lead to problems if reusing preludes (default: True)
"use_backward_solving": Whether to permit backward solving (using the solver to find operator calls that satisfy a type) (default: True)
"use_forward_solving": Whether to use forward solving (sample operators to skew generator towards producing operators) (default: True)
"use_forward_sampling": Whether to apply forward solving by randomly sampling _without using a solver_ (default: False)
"fuel": Fuel parameter to control the size of generated expressions (default: 10)
"type_fuel": Fuel parameter to control the size of generated types (default: fuel)
Recommendation: This should probably be lower than the general fuel,
as it may lead to really big programs that have to satisfy the huge types
but it may expose bugs to try big types
"pattern_fuel": Fuel parameter to control the size of generated patterns (default: fuel)
Recommendation: Keep lower than the general fuel, but see above
"""
class FuzzerConfig:
def produce_type_generator(self, prelude, fuel=None):
type_fuel = self.type_fuel
if fuel is not None:
type_fuel = fuel
return TestTypeGenerator(prelude, fuel=type_fuel,
max_arity=self.max_arity, max_dim=self.max_dim)
def produce_pattern_generator(self, var_scope, prelude, fuel=None):
pat_fuel = self.pattern_fuel
if fuel is not None:
pat_fuel = fuel
return TestPatternGenerator(var_scope, prelude, fuel=pat_fuel,
pattern_attempts=self.max_pattern_attempts)
def initialize_solver(self):
max_dim = self.max_dim
# because the solver's random seed depends on the instance of the solver,
# we need to configure this when we set up the ILP solver
seed = None if not self.set_seed else self.seed
solver = (ILPSolver(max_dim, self.solver_timeout, False, seed=seed)
if self.use_ilp else BruteForceSolver(max_dim))
if self.memoize_solver:
solver = MemoizedSolver(solver)
self.solver = ProfiledSolver(solver)
def initialize_ops(self):
max_dim = self.max_dim
solver = self.solver
# TODO: factor out this logic and op dispatching to a dedicated class (too much coupling)
self.basic_tensor_ops = [
ctor(max_dim, solver)
for ctor in (ALL_IDENTITY_OPS + ALL_BROADCASTING_OPS)
]
# operators that can return any nonscalar tensor
self.all_nonscalar_ops = self.basic_tensor_ops + [ctor(max_dim, solver)
for ctor in ALL_NONSCALAR_OPS]
batch_matmul_info = BatchMatmulInfo(max_dim, solver)
conv2d_info = Conv2DInfo(max_dim, solver)
self.rank_3_ops = self.all_nonscalar_ops + [batch_matmul_info]
self.rank_4_ops = self.all_nonscalar_ops + [conv2d_info]
self.batch_norm_info = BatchNormInfo(max_dim, solver)
self.all_ops = self.all_nonscalar_ops + [
batch_matmul_info, conv2d_info, self.batch_norm_info
]
def set_seeds(self):
if not self.set_seed:
return
random.seed(self.seed)
np.random.seed(self.seed)
self.solver.set_seed(self.seed)
def reset_seed(self, seed):
self.set_seed = True
self.seed = seed
self.set_seeds()
def get_solver_profile(self):
return self.solver.get_record()
def set_field(config, inp, fieldname, default_value, validate=None):
if inp is None or fieldname not in inp:
setattr(config, fieldname, default_value)
return
if validate is not None and not validate(inp[fieldname]):
raise ValueError(f"Invalid configuration value {listed_value}"
f" for field {fieldname}")
setattr(config, fieldname, inp[fieldname])
ret = FuzzerConfig()
positive_int = lambda i: isinstance(i, int) and 0 < i
is_bool = lambda b: isinstance(b, bool)
set_field(ret, config, "max_dim", MAX_DIM, positive_int)
set_field(ret, config, "max_arity", MAX_DIM, positive_int)
set_field(ret, config, "max_pattern_attempts", MAX_PATTERN_ATTEMPTS, positive_int)
set_field(ret, config, "solver_timeout", 30, positive_int)
set_field(ret, config, "use_ilp", True, is_bool)
set_field(ret, config, "memoize_solver", True, is_bool)
set_field(ret, config, "set_seed", False, is_bool)
set_field(ret, config, "random_seed", 0, lambda i: isinstance(i, int))
set_field(ret, config, "exclude_main", True, is_bool)
set_field(ret, config, "use_backward_solving", True, is_bool)
set_field(ret, config, "use_forward_solving", True, is_bool)
set_field(ret, config, "use_forward_sampling", False, is_bool)
set_field(ret, config, "fuel", 10, positive_int)
set_field(ret, config, "type_fuel", ret.fuel, positive_int)
set_field(ret, config, "pattern_fuel", ret.fuel, positive_int)
ret.initialize_solver()
ret.initialize_ops()
ret.set_seeds()
return ret