-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest.py
executable file
·165 lines (147 loc) · 4.81 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#! /usr/bin/env python
from __future__ import absolute_import, division, print_function, unicode_literals
import sys, os
import logging
import argparse
import numpy as np
sys.path.append("./")
from inference.estimator import ParameterizedRatioEstimator
from inference.utils import load_and_check
from simulation.prior import (
draw_params_from_prior,
get_reference_point,
get_grid,
get_grid_point,
get_grid_midpoint_index,
)
def evaluate(
data_dir,
model_filename,
sample_filename,
result_filename,
aux=False,
grid=True,
shuffle=False,
small=False,
gradx=False,
fine=False,
i_theta_grid=None,
):
if not os.path.exists("{}/results".format(data_dir)):
os.mkdir("{}/results".format(data_dir))
estimator = ParameterizedRatioEstimator()
estimator.load("{}/models/{}".format(data_dir, model_filename))
if grid:
x = np.load("{}/samples/x_{}.npy".format(data_dir, sample_filename))
aux_data, n_aux = load_aux(
"{}/samples/z_{}.npy".format(data_dir, sample_filename), aux
)
if small:
x = x[:100]
if aux_data is not None:
aux_data = aux_data[:100]
theta = get_grid(fine=fine)
grad_x_index = get_grid_midpoint_index()
llr, _, grad_x = estimator.log_likelihood_ratio(
x=x,
aux=aux_data,
theta=theta,
test_all_combinations=True,
evaluate_grad_x=True,
grad_x_theta_index=grad_x_index,
)
else:
x = np.load("{}/samples/x_{}.npy".format(data_dir, sample_filename))
aux_data, n_aux = load_aux(
"{}/samples/z_{}.npy".format(data_dir, sample_filename), aux
)
if i_theta_grid is not None:
theta = np.asarray([get_grid_point(i_theta_grid) for _ in range(x.shape[0])])
logging.info("Determined grid theta %s = %s", i_theta_grid, theta[0])
else:
theta = np.load("{}/samples/theta_{}.npy".format(data_dir, sample_filename))
if shuffle:
np.random.shuffle(theta)
llr, _, grad_x = estimator.log_likelihood_ratio(
x=x,
aux=aux_data,
theta=theta,
test_all_combinations=False,
evaluate_grad_x=gradx,
)
if shuffle:
np.save(
"{}/results/shuffled_theta_{}.npy".format(data_dir, result_filename), theta
)
np.save("{}/results/llr_{}.npy".format(data_dir, result_filename), llr)
if gradx:
np.save("{}/results/grad_x_{}.npy".format(data_dir, result_filename), grad_x)
def load_aux(filename, aux=False):
if aux:
return load_and_check(filename)[:, 2].reshape(-1, 1), 1
else:
return None, 0
def parse_args():
parser = argparse.ArgumentParser(
description="High-level evaluation script"
)
# Main options
parser.add_argument("model", type=str, help="Model name.")
parser.add_argument("sample", type=str, help='Sample name, like "test".')
parser.add_argument("result", type=str, help="File name for results.")
parser.add_argument(
"--grid",
action="store_true",
help="Evaluates the images on a parameter grid rather than just at the original parameter points.",
)
parser.add_argument(
"--finegrid",
action="store_true",
help="If used with --grid, uses a finer grid centered on the true point.",
)
parser.add_argument(
"--shuffle",
action="store_true",
help="If --grid is not used, shuffles the theta values between the images. This can be useful to make ROC curves.",
)
parser.add_argument(
"-z", action="store_true", help="Provide lens redshift to the network"
)
parser.add_argument(
"--dir",
type=str,
default=".",
help="Directory. Training data will be loaded from the data/samples subfolder, the model saved in the "
"data/models subfolder.",
)
parser.add_argument(
"--small", action="store_true", help="Restricts evaluation to first 100 images."
)
parser.add_argument("--grad", action="store_true", help="Evaluate gradients wrt x.")
parser.add_argument(
"--igrid",
type=int, default=None,
)
return parser.parse_args()
if __name__ == "__main__":
logging.basicConfig(
format="%(asctime)-5.5s %(name)-20.20s %(levelname)-7.7s %(message)s",
datefmt="%H:%M",
level=logging.INFO,
)
logging.info("Hi!")
args = parse_args()
evaluate(
args.dir + "/data",
args.model,
args.sample,
args.result,
args.z,
args.grid,
args.shuffle,
args.small,
gradx=args.grad,
fine=args.finegrid,
i_theta_grid=args.igrid
)
logging.info("All done! Have a nice day!")