-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathbenchmark.py
35 lines (25 loc) · 1.4 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#!/usr/bin/env python
import glob
import numpy
import PIL
import PIL.Image
import skimage
import skimage.metrics
import torch
import run
##########################################################
run.args_strModel = 'paper'
##########################################################
if __name__ == '__main__':
fltPsnr = []
fltSsim = []
for strTruth in sorted(glob.glob('./middlebury/*/frame10i11.png')):
tenOne = torch.FloatTensor(numpy.ascontiguousarray(numpy.array(PIL.Image.open(strTruth.replace('frame10i11', 'frame10')))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0)))
tenTwo = torch.FloatTensor(numpy.ascontiguousarray(numpy.array(PIL.Image.open(strTruth.replace('frame10i11', 'frame11')))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0)))
npyEstimate = (run.estimate(tenOne, tenTwo).clip(0.0, 1.0).numpy(force=True).transpose(1, 2, 0) * 255.0).round().astype(numpy.uint8)
fltPsnr.append(skimage.metrics.peak_signal_noise_ratio(image_true=numpy.array(PIL.Image.open(strTruth))[:, :, ::-1], image_test=npyEstimate, data_range=255))
fltSsim.append(skimage.metrics.structural_similarity(im1=numpy.array(PIL.Image.open(strTruth))[:, :, ::-1], im2=npyEstimate, data_range=255, channel_axis=2))
# end
print('computed average psnr', numpy.mean(fltPsnr))
print('computed average ssim', numpy.mean(fltSsim))
# end