-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGCMC-GR.py
111 lines (98 loc) · 4.23 KB
/
GCMC-GR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
###################################################
# Run RASPA and then calculates Gelman-Rubin value#
# Only works for single pressure calculation now #
###################################################
import pathlib
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
# use a non-interactive backend
import matplotlib
matplotlib.use('Agg')
file_dir = os.getcwd()
Sim_dir = file_dir + '/'
directory2 = 'Output/System_0/'
loadings = []
printevery = 50
fsize = 10
def Get_GR(round):
for filename in os.listdir(Sim_dir + directory2):
#here a second for loop for the directory names of the pore sizes
if filename.endswith(".data"):
with open(os.path.join(Sim_dir + directory2, filename),'r') as r:
for ind, line in enumerate(r,1):
if 'absolute adsorption:' in line:
molkg = line.split("[mol/uc],")
# ['\tabsolute adsorption: 0.37500 (avg. 0.29736) ', ' 0.3903180149 (avg. 0.3095051343) [mol/kg], 41.4381120499 (avg. 32.8586125877) [mg/g]\n']
molkg = molkg[1].split()[0] # the first number in the second element
#print(molkg)
loadings.append(molkg)
Cycles = np.linspace(0,printevery * (len(loadings)-1), len(loadings))
#####################################
# GENERATE LOADING vs. CYCLE PLOT ##
#####################################
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
ax1.plot(Cycles, loadings, label = 'GCMC Loading vs. Cycles')
ax1.legend(prop={'size': 6})
ax1.set_xlabel('Cycles', fontsize = fsize, fontweight='bold')
ax1.set_ylabel("Loading [mol/kg]", fontsize = fsize, fontweight='bold')
fig1.savefig(Sim_dir + 'Loading-Cycle-' + str(round) + '.png', dpi=900, bbox_inches = 'tight')
######################################
# CALCULATE GELMAN-RUBIN VALUE ####
######################################
Dataset = pd.DataFrame()
Dataset['Cycle'] = [int(a) for a in Cycles]
Dataset['Loading'] = [float(a) for a in loadings]
nblock = 5
L = int(len(loadings)/nblock)
list_of_blocks = []
list_averages = []
list_block_var = []
for a in range(0,nblock):
#print(a)
blocka = Dataset.loc[a*L: (a+1)*L]
list_averages.append(np.mean(blocka['Loading']))
list_block_var.append(np.var(blocka['Loading']))
# then calculate the r score
B = np.var(list_averages)*L
W = np.mean(list_block_var)
R = ((L-1)/L*W + 1/L*B)/W
print("Round " + str(round) + ", R is: " + str(R))
return R
def Restart_Simulation(round):
os.rename('Output', str(round) + '-output')
if(os.path.isdir('RestartInitial')):
print("It exists")
os.rename('RestartInitial', str(round) + '-restartinitial')
os.rename('Restart', 'RestartInitial')
# change the line for reading restart file in simulation.input
with open('simulation.input', 'r') as file :
filedata = file.read()
filedata = filedata.replace('RestartFile no', 'RestartFile yes')
with open('simulation.input', 'w') as file:
file.write(filedata)
# finally, run the simulation
os.system('./bsub.job')
##############################################################################################
# Step 1: start the simulation, provided that all the setup are done in the current folder ##
##############################################################################################
os.system('./bsub.job')
#################################################################################################
# Before Step 2, setup the parameters for Gelman-Rubin(GR) ##
# Number of GR-rounds, GR threshold (usually 1.5, but this seems too strict, 3 may be better) ##
#################################################################################################
GR_rounds = 5
GR_goal = 1.5
##################################################################
# Step 3, get GR and check the value ##
# If it is greater than the threshold, restart the simulation ##
##################################################################
current_round = 0
currentGR = Get_GR(current_round)
while((currentGR > GR_goal) and (current_round <= GR_rounds)):
print("Current Round: " + str(current_round))
Restart_Simulation(current_round)
current_round += 1
currentGR = Get_GR(current_round)