Fine-tune using SLM with classification loss
accelerate launch \
--config_file configs/accelerate_config_8gpu.yaml \
main.py \
--task_type classfication \
--dataset javascript \
--model codebert-base \
--max_seq_length 512
accelerate launch \
--config_file configs/accelerate_config_8gpu.yaml \
main.py \
--task_type generation \
--dataset javascript \
--model codeqwen1.5-7b-chat \
--prompt_version 1 \
--eval_only
Few-shot using LLM with random examples
accelerate launch \
--config_file configs/accelerate_config_8gpu.yaml \
main.py \
--task_type generation \
--dataset javascript \
--model codeqwen1.5-7b-chat \
--prompt_version 1 \
--eval_only \
--few_shot_k 3 \
--max_seq_length 4096 \
--per_device_eval_batch_size 4
Few-shot using LLM with similar examples based on embedding model
accelerate launch \
--config_file configs/accelerate_config_8gpu.yaml \
main.py \
--task_type generation \
--dataset javascript \
--model codeqwen1.5-7b-chat \
--prompt_version 1 \
--eval_only \
--few_shot_k 3 \
--embedding_model simcse-bert-base
Fine-tune (QLoRA) using LLM with causal LM loss
accelerate launch \
--config_file configs/accelerate_config_8gpu.yaml \
main.py \
--task_type generation \
--dataset javascript \
--model codeqwen1.5-7b \
--prompt_version 1
Fine-tune (QLoRA) using LLM with classification loss
accelerate launch \
--config_file configs/accelerate_config_8gpu.yaml \
main.py \
--task_type classfication \
--dataset javascript \
--model codeqwen1.5-7b