-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstrategy.py
337 lines (262 loc) · 11 KB
/
strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""
"""
import numpy as np
import scipy.stats
from copy import deepcopy
import matplotlib.pyplot as plt
class Strategy:
""" Base Strategy Class
Args:
bandit (Bandit): bandit to apply strategy on
**kwargs: additonal key-word arguments
"""
def __init__(self, bandit, **kwargs):
raise NotImplementedError
def fit(self, iterations, **kwargs):
""" Fit Strategy on the current bandit
Args:
iterations (int): number of iterations to evaluate
**kwargs: additional key-word arguments
Returns:
A dictionary with arguments:
rewards (list): the values returned by the bandit
at every iteration.
arms_pulled (list): the arm pulled at every iteration.
... : additional optional return values
"""
raise NotImplementedError
class ThompsonSampling(Strategy):
def __init__(self, bandit, **kwargs):
self.bandit = bandit
self.num_arms = bandit.num_arms
self.prior_params = [deepcopy(kwargs) for _ in range(self.num_arms)]
self.posterior_params = deepcopy(self.prior_params)
def fit(self, iterations, restart=False, plot=False):
if restart == True:
self._restart()
index_arms_pulled = [None] * iterations
observed_rewards = [None] * iterations
mean_reward_estimates = [None] * iterations
for i in range(iterations):
index_arms_pulled[i] = self._choose_arm()
observed_rewards[i] = self.pull_arm(index_arms_pulled[i])
self._update_posterior(index_arms_pulled[i], observed_rewards[i])
mean_reward_estimates[i] = self.mean_reward_estimates
if plot == True:
plt.close()
plt.plot(mean_reward_estimates)
plt.show()
out = {
'rewards': observed_rewards,
'arms_pulled': index_arms_pulled,
'estimated_arm_means': mean_reward_estimates
}
return out
def _restart(self):
self.posterior_params = deepcopy(self.prior_params)
def _choose_arm(self):
samples = [self._sample(**params) for params in self.posterior_params]
return np.argmax(samples)
def pull_arm(self, arm_index):
return self.bandit.pull_arm(arm_index)
def _sample(self, **kwargs):
raise NotImplementedError
def _update_posterior(self, arm_index, observed_reward):
raise NotImplementedError
@property
def mean_reward_estimates(self):
raise NotImplementedError
class ThompsonBernoulli(ThompsonSampling):
"""asdf"""
def __init__(self, bandit, alpha_prior, beta_prior):
ThompsonSampling.__init__(self, bandit, alpha=alpha_prior, beta=beta_prior)
def _sample(self, alpha, beta):
return scipy.stats.beta.rvs(alpha, beta, size=1)
def _update_posterior(self, arm_index, observed_reward):
if observed_reward == 1:
self.posterior_params[arm_index]['alpha'] += 1
else:
self.posterior_params[arm_index]['beta'] += 1
@property
def mean_reward_estimates(self):
return [params['alpha'] / (params['alpha'] + params['beta']) for params
in self.posterior_params]
class ThompsonGaussianKnownSigma(ThompsonSampling):
"""asdf """
def __init__(self, bandit, sigma, mu_prior, sigma_prior, memory_multiplier=0.9):
ThompsonSampling.__init__(self, bandit, mu=mu_prior, sigma2=sigma_prior ** 2)
self.sigma2 = sigma ** 2
self.sufficient_statistics = [{'n': 0, 'xsum': 0} for _ in range(self.num_arms)]
self.memory_multiplier = memory_multiplier
def _sample(self, mu, sigma2):
return np.random.normal(loc=mu, scale=np.sqrt(sigma2))
def _update_posterior(self, arm_index, observed_reward):
sigma2 = self.sigma2
for index in range(self.num_arms):
old_n = self.sufficient_statistics[index]['n']
old_xsum = self.sufficient_statistics[index]['xsum']
mu_prior = self.prior_params[index]['mu']
sigma2_prior = self.prior_params[index]['sigma2']
if index == arm_index:
new_n = self.memory_multiplier * old_n + 1
new_xsum = self.memory_multiplier * old_xsum + observed_reward
else:
new_n = self.memory_multiplier * old_n
new_xsum = self.memory_multiplier * old_xsum
new_sigma2_posterior = 1 / (1 / sigma2_prior + new_n / sigma2)
new_mu_posterior = (mu_prior / sigma2_prior + new_xsum / sigma2) * new_sigma2_posterior
self.sufficient_statistics[index]['n'] = new_n
self.sufficient_statistics[index]['xsum'] = new_xsum
self.posterior_params[index]['mu'] = new_mu_posterior
self.posterior_params[index]['sigma2'] = new_sigma2_posterior
@property
def mean_reward_estimates(self):
return [params['mu'] for params in self.posterior_params]
class EpsilonGreedy(Strategy):
""" Epislon Greedy Strategy
Args:
bandit (Bandit): bandit of interest
epsilon (double): chance of random exploration vs exploitation
must be a value within [0,1]
"""
def __init__(self, bandit, epsilon, **kwargs):
self.bandit = bandit
if epsilon > 1 or epsilon < 0:
raise ValueError("epsilon {0} must be in [0,1]".format(epsilon))
self.epsilon = epsilon
self.num_arms = self.bandit.num_arms
return
def fit(self, iterations, memory_multiplier = 1.0, **kwargs):
""" Fit
Args:
iterations (int): number of iterations
memory_multiplier (double): exponential decay factor for arm
estimates. Must be in (0,1]
**kwargs: other
Returns:
A dictionary with arguments:
rewards (list): the values returned by the bandit
at every iteration.
arms_pulled (list): the arm pulled at every iteration.
...
"""
assert(iterations >= self.num_arms)
assert(memory_multiplier > 0)
assert(memory_multiplier <= 1)
iteration = 0
reward_sum_per_arm = np.zeros(self.num_arms)
pull_count_per_arm = np.zeros(self.num_arms)
estimated_arm_means = np.zeros((self.num_arms, iterations))
rewards = [None] * iterations
arms_pulled = [None] * iterations
def pull_arm_index(arm_index, iteration):
nonlocal rewards, arms_pulled, \
reward_sum_per_arm, pull_count_per_arm, estimated_arm_means
reward = self.bandit.pull_arm(arm_index)
# Update statistics
arms_pulled[iteration] = arm_index
rewards[iteration] = reward
reward_sum_per_arm[arm_index] += reward
pull_count_per_arm[arm_index] += 1
# Calculate estimate of arm means
nonzero_arms = pull_count_per_arm > 0
estimated_arm_means[nonzero_arms, iteration] = (
reward_sum_per_arm[nonzero_arms] /
pull_count_per_arm[nonzero_arms]
)
estimated_arm_means[~nonzero_arms, iteration] = np.nan
# Apply memory_multiplier
reward_sum_per_arm *= memory_multiplier
pull_count_per_arm *= memory_multiplier
return
# Pull each arm once
scan_order = np.arange(self.num_arms)
np.random.shuffle(scan_order)
for arm_index in scan_order:
pull_arm_index(arm_index, iteration)
iteration += 1
# Epsilon Greedy
while(iteration < iterations):
if(np.random.rand() < self.epsilon):
# Explore
arm_index = int(np.random.randint(0, self.num_arms))
pull_arm_index(arm_index, iteration)
iteration += 1
else:
# Greedy
arm_index = int(np.argmax(estimated_arm_means[:,iteration-1]))
pull_arm_index(arm_index, iteration)
iteration += 1
out_dict = dict(
rewards = rewards,
arms_pulled = arms_pulled,
estimated_arm_means = estimated_arm_means,
)
return out_dict
class UCB(Strategy):
""" UCB Strategy
Args:
bandit (Bandit): bandit of interest
epsilon (double): chance of random exploration vs exploitation
must be a value within [0,1]
"""
def __init__(self, bandit, **kwargs):
self.bandit = bandit
self.num_arms = self.bandit.num_arms
return
def fit(self, iterations, **kwargs):
""" Fit
Args:
iterations (int): number of iterations
Returns:
A dictionary with arguments:
rewards (list): the values returned by the bandit
at every iteration.
arms_pulled (list): the arm pulled at every iteration.
...
"""
assert(iterations >= self.num_arms)
iteration = 0
reward_sum_per_arm = np.zeros(self.num_arms)
pull_count_per_arm = np.zeros(self.num_arms)
estimated_arm_means = np.zeros((self.num_arms, iterations))
rewards = [None] * iterations
arms_pulled = [None] * iterations
def pull_arm_with_index(arm_index, iteration):
nonlocal rewards, arms_pulled, \
reward_sum_per_arm, pull_count_per_arm, estimated_arm_means
reward = self.bandit.pull_arm(arm_index)
if reward < 0 or reward > 1:
raise Exception("UCB bandit algorithm only works when bandit arms " +
"return rewards between 0 and 1.")
# Update statistics
arms_pulled[iteration] = arm_index
rewards[iteration] = reward
reward_sum_per_arm[arm_index] += reward
pull_count_per_arm[arm_index] += 1
# Calculate estimate of arm means
nonzero_arms = pull_count_per_arm > 0
estimated_arm_means[nonzero_arms, iteration] = (
reward_sum_per_arm[nonzero_arms] /
pull_count_per_arm[nonzero_arms]
)
estimated_arm_means[~nonzero_arms, iteration] = np.nan
return
# Pull each arm once
scan_order = np.arange(self.num_arms)
np.random.shuffle(scan_order)
for arm_index in scan_order:
pull_arm_with_index(arm_index, iteration)
iteration += 1
# UCB alg
while(iteration < iterations):
arm_index = np.argmax(estimated_arm_means[:,iteration - 1] +
np.sqrt(2 * np.log(iterations) / pull_count_per_arm))
pull_arm_with_index(arm_index, iteration)
iteration += 1
out_dict = dict(
rewards = rewards,
arms_pulled = arms_pulled,
estimated_arm_means = estimated_arm_means,
)
return out_dict