-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
321 lines (270 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import datetime
import logging
import os
import time
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from dataloader import preprocess_dataset, STNN_Dataset, preprocess_datasets
from model import STNN
from utils import fit_delimiter, elapsed_time_format
from utils import masked_MAE, masked_MAPE
from utils import model_summary, masked_MSE
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
print(device)
def initialization(args):
# Set random seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.benchmark = False
# Create log dir
timestamp = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
log_dir = os.path.join('runs', f'exp {timestamp}')
Path(log_dir).mkdir(exist_ok=True, parents=True)
args.log_dir = log_dir
# Initialize logger
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
logging.basicConfig(level=logging.INFO, format='',
filename=os.path.join(log_dir, f"log_training.txt"),
filemode='w')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
logging.getLogger('').addHandler(console)
args.log_plotting = os.path.join(log_dir, f"log_plotting.txt")
# Save hyper-parameters
logging.info(fit_delimiter('Hyper-parameters', 80))
for arg in vars(args):
logging.info(f'{arg}={getattr(args, arg)}')
return logging
# Tool function
def prepare_dataloaders(args):
print('Transform Dataset...')
# Convert data to the sub-spacetime format
if isinstance(args.data, str):
train_samples_path, train_targets_path, val_samples_path, val_targets_path, test_samples_path, test_targets_path = \
preprocess_dataset(args.data, t_in=args.t_history, t_out=args.t_pred,
num_nearby_nodes=args.num_nearby_nodes,
keep_ratio=args.keep_ratio,
debug=args.debug)
elif isinstance(args.data, list):
train_samples_path, train_targets_path, val_samples_path, val_targets_path, test_samples_path, test_targets_path = \
preprocess_datasets(args.data, t_in=args.t_history, t_out=args.t_pred,
num_nearby_nodes=args.num_nearby_nodes,
keep_ratio=args.keep_ratio,
debug=args.debug)
else:
raise Exception('Check args.data!')
if 'test_samples_path' in args and 'test_targets_path' in args:
test_samples_path = args.test_samples_path
test_targets_path = args.test_targets_path
print('Construct DataLoader...')
# Training set loader
train_set = STNN_Dataset(train_samples_path, train_targets_path)
train_dataloader = DataLoader(train_set, batch_size=args.batch_size,
shuffle=True, drop_last=True, num_workers=0)
# Validation set loader
val_set = STNN_Dataset(val_samples_path, val_targets_path)
val_dataloader = DataLoader(val_set, batch_size=args.batch_size,
shuffle=False, drop_last=False, num_workers=0)
# Test set loader
test_set = STNN_Dataset(test_samples_path, test_targets_path)
test_dataloader = DataLoader(test_set, batch_size=args.batch_size,
shuffle=False, drop_last=False, num_workers=0)
return train_dataloader, val_dataloader, test_dataloader
def train_batch(model, x, y, optimizer, criterion, device):
x = x.to(device=device, dtype=torch.float)
y = y.to(device=device, dtype=torch.float)
optimizer.zero_grad()
output = model(x)
loss = criterion(output, y)
loss.backward()
optimizer.step()
return loss, output
def train(args, logging, train_dataloader, val_dataloader, test_dataloader):
# Define model
model = STNN(args.num_features, args.t_history, args.t_pred,
node_num=args.num_nearby_nodes, dropout=args.dropout)
model = model.to(device=args.device)
# Warm start
if 'warmstart' in args:
checkpoint = torch.load(args.warmstart)
model.load_state_dict(checkpoint['model_state_dict'])
# Model summary
table, total_params = model_summary(model)
logging.info(f'{table}')
logging.info(f'Total Trainable Params: {total_params}')
# Define loss and optimizer
loss_criterion = nn.L1Loss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
training_losses = []
validation_losses = []
validation_metrics = {'MAEs': [], 'MSEs': [], 'MAPEs': []}
test_metrics = {'MAEs': [], 'MSEs': [], 'MAPEs': []}
for epoch in range(args.epochs):
logging.info(f"------------- Epoch: {epoch:03d} -----------")
logging.info(f"{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}, "
f"train batches: {len(train_dataloader)}, "
f"val batches: {len(val_dataloader)}, "
f"test batches: {len(test_dataloader)}, ")
# Train
print('Training')
batches_train_loss = []
loop = tqdm(train_dataloader, ncols=100)
for data, target in loop:
model.train()
x = data.to(device=args.device, dtype=torch.float)
y = target.to(device=args.device, dtype=torch.float)
loss, out = train_batch(model, x, y, optimizer, loss_criterion, args.device)
batches_train_loss.append(loss.detach().cpu().numpy())
loop.set_description(f'Train {epoch + 1}/{args.epochs}')
loop.set_postfix(loss=np.mean(np.array(batches_train_loss)))
training_losses.append(np.mean(np.array(batches_train_loss)))
# Validation
print('Validation')
batches_val_loss = []
batches_val_metrics = {'MAEs': [], 'MSEs': [], 'MAPEs': []}
with torch.no_grad():
loop = tqdm(val_dataloader, ncols=100)
for data, target in loop:
model.eval()
x_val = data.to(device=args.device, dtype=torch.float)
y_val = target.to(device=args.device, dtype=torch.float)
out = model(x_val)
val_loss = loss_criterion(out, y_val).to(device="cpu")
batches_val_loss.append((val_loss.detach().numpy()).item())
# Metrics
out_denormalized = out.detach().cpu().numpy().flatten()
target_denormalized = y_val.detach().cpu().numpy().flatten()
mae = masked_MAE(out_denormalized, target_denormalized)
mse = masked_MSE(out_denormalized, target_denormalized)
mape = masked_MAPE(out_denormalized, target_denormalized)
if not (np.isnan(mae) or np.isnan(mse) or np.isnan(mape)):
batches_val_metrics['MAEs'].append(mae)
batches_val_metrics['MSEs'].append(mse)
batches_val_metrics['MAPEs'].append(mape)
loop.set_description(f'Val {epoch + 1}/{args.epochs}')
move_mae = np.mean(np.array(batches_val_metrics['MAEs']))
move_mse = np.mean(np.array(batches_val_metrics['MSEs']))
move_mape = np.mean(np.array(batches_val_metrics['MSEs']))
loop.set_postfix(MAE=move_mae, MSE=move_mse, MAPE=move_mape)
assert np.mean(np.array(batches_val_loss)) == sum(batches_val_loss) / len(batches_val_loss)
epoch_val_loss = np.mean(np.array(batches_val_loss))
validation_losses.append(epoch_val_loss)
validation_metrics['MAEs'].append(np.mean(np.array(batches_val_metrics['MAEs'])))
validation_metrics['MSEs'].append(np.mean(np.array(batches_val_metrics['MSEs'])))
validation_metrics['MAPEs'].append(np.mean(np.array(batches_val_metrics['MAPEs'])))
# Save model based on val loss
if args.save:
if epoch_val_loss == min(validation_losses):
torch.save({'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
}, os.path.join(args.log_dir, f'epoch{epoch}_checkpoint.pt'))
# Testing
print('Testing')
batches_test_metrics = {'MAEs': [], 'MSEs': [], 'MAPEs': []}
with torch.no_grad():
model.eval()
loop = tqdm(test_dataloader, ncols=110)
for data, target in loop:
x_test = data.to(device=args.device, dtype=torch.float)
y_test = target.to(device=args.device, dtype=torch.float)
out = model(x_test)
# Metrics
out_denormalized = out.detach().cpu().numpy().flatten()
target_denormalized = y_test.detach().cpu().numpy().flatten()
mae = masked_MAE(out_denormalized, target_denormalized)
mse = masked_MSE(out_denormalized, target_denormalized)
mape = masked_MAPE(out_denormalized, target_denormalized)
if not (np.isnan(mae) or np.isnan(mse) or np.isnan(mape)):
batches_test_metrics['MAEs'].append(mae)
batches_test_metrics['MSEs'].append(mse)
batches_test_metrics['MAPEs'].append(mape)
loop.set_description(f'Test {epoch + 1}/{args.epochs}')
move_mae = np.mean(np.array(batches_test_metrics['MAEs']))
move_mse = np.mean(np.array(batches_test_metrics['MSEs']))
move_mape = np.mean(np.array(batches_test_metrics['MSEs']))
loop.set_postfix(MAE=move_mae, MSE=move_mse, MAPE=move_mape)
test_metrics['MAEs'].append(np.mean(np.array(batches_test_metrics['MAEs'])))
test_metrics['MSEs'].append(np.mean(np.array(batches_test_metrics['MSEs'])))
test_metrics['MAPEs'].append(np.mean(np.array(batches_test_metrics['MAPEs'])))
# Print epoch results
logging.info(f"Pred {args.t_pred} steps - Training loss: {training_losses[-1]:.8f}")
logging.info(f"Pred {args.t_pred} steps - Validation loss: {validation_losses[-1]:.8f}")
logging.info(f"Pred {args.t_pred} steps - Validation MAE: {validation_metrics['MAEs'][-1]:.4f}")
logging.info(f"Pred {args.t_pred} steps - Validation RMSE: {np.sqrt(validation_metrics['MSEs'][-1]):.4f}")
logging.info(f"Pred {args.t_pred} steps - Validation MAPE: {validation_metrics['MAPEs'][-1]:.4f}")
logging.info(f"Pred {args.t_pred} steps - Test MAE: {test_metrics['MAEs'][-1]:.4f}")
logging.info(f"Pred {args.t_pred} steps - Test RMSE: {np.sqrt(test_metrics['MSEs'][-1]):.4f}")
logging.info(f"Pred {args.t_pred} steps - Test MAPE: {test_metrics['MAPEs'][-1]:.4f}")
with open(args.log_plotting, 'w') as f:
print(f"Training loss={training_losses}", file=f)
print(f"Validation loss={validation_losses}", file=f)
print(f"Validation MAE={validation_metrics['MAEs']}", file=f)
print(f"Validation RMSE={np.sqrt(validation_metrics['MSEs'])}", file=f)
print(f"Validation MAPE={validation_metrics['MAPEs']}", file=f)
print(f"Test MAE={test_metrics['MAEs']}", file=f)
print(f"Test RMSE={np.sqrt(test_metrics['MSEs'])}", file=f)
print(f"Test MAPE={test_metrics['MAPEs']}", file=f)
return training_losses, validation_losses, validation_metrics, test_metrics
# Main function
def main(args):
# Initializing
logging = initialization(args)
# Prepare train/va/test dataloader
train_dataloader, val_dataloader, test_dataloader = prepare_dataloaders(args)
assert next(iter(train_dataloader))[0].shape[-1] == 3
# Training
start_time = time.time()
training_losses, validation_losses, validation_metrics, test_metrics = train(args, logging,
train_dataloader,
val_dataloader,
test_dataloader)
logging.info(f"Elapsed time: {elapsed_time_format(time.time() - start_time)}")
# Save summary metrics
logging.info(fit_delimiter('Performance Summary', 80))
logging.info(f"Pred {args.t_pred} steps - Top 3 Val MAEs: {np.partition(validation_metrics['MAEs'], 2)[:3]}")
logging.info(f"Pred {args.t_pred} steps - Top 3 Val RMSEs: {np.partition(validation_metrics['RMSEs'], 2)[:3]}")
logging.info(f"Pred {args.t_pred} steps - Top 3 Val MAPEs: {np.partition(validation_metrics['MAPEs'], 2)[:3]}")
logging.info(f"Pred {args.t_pred} steps - Top 3 Test MAEs: {np.partition(test_metrics['MAEs'], 2)[:3]}")
logging.info(f"Pred {args.t_pred} steps - Top 3 Test RMSEs: {np.partition(test_metrics['RMSEs'], 2)[:3]}")
logging.info(f"Pred {args.t_pred} steps - Top 3 Test MAPEs: {np.partition(test_metrics['MAPEs'], 2)[:3]}")
# Save detail metrics
logging.info(fit_delimiter('Detail Metrics', 80))
logging.info(f'Val MAEs : {validation_metrics["MAEs"]}')
logging.info(f'Val RMSEs: {validation_metrics["RMSEs"]}')
logging.info(f'Val MAPEs: {validation_metrics["MAPEs"]}')
logging.info(f'Test MAEs : {test_metrics["MAEs"]}')
logging.info(f'Test RMSEs: {test_metrics["RMSEs"]}')
logging.info(f'Test MAPEs: {test_metrics["MAPEs"]}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=1, help='random seed')
parser.add_argument('--device', type=str, default=device, help='')
parser.add_argument('--data', type=str, nargs='+', default='data/METR-LA', help='data path')
parser.add_argument('--keep_ratio', type=float, default=0.2,
help='random sample 20% data from training set to train')
parser.add_argument('--num_nearby_nodes', type=int, default=15, help='subgraph size')
parser.add_argument('--num_features', type=int, default=3, help='traffic event: speed, time, location')
parser.add_argument('--t_history', type=int, default=12, help='T_h')
parser.add_argument('--t_pred', type=int, default=12, help='T_r')
parser.add_argument('--target_node', type=int, default=0, help='target node to predict')
parser.add_argument('--epochs', type=int, default=50, help='number of epochs')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--batch_size', type=int, default=80, help='batch size')
parser.add_argument('--dropout', type=float, default=0.3, help='dropout rate')
parser.add_argument('--save', action='store_true', default=True, help='whether save model')
parser.add_argument('--debug', action='store_true', default=False, help='debug mode, faster')
args = parser.parse_args()
main(args)