-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
executable file
·178 lines (135 loc) · 6.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import argparse
import numpy as np
import os
from shutil import copyfile
import configparser
import Levenshtein
from data_loader import DataLoader, SpectrogramDataset, BucketingSampler
from decoder import GreedyDecoder
from PuzzleLib.Models.Nets.WaveToLetter import loadW2L
from PuzzleLib.Backend import gpuarray
from PuzzleLib.Cost.CTC import CTC
from PuzzleLib.Optimizers.Adam import Adam
from PuzzleLib.Modules import MoveAxis
from PuzzleLib.Modules.Cast import Cast
def get_data_loader(manifest_file_path, labels, sample_rate, window_size, window_stride, batch_size):
dataset = SpectrogramDataset(labels, sample_rate, window_size, window_stride, manifest_file_path)
sampler = BucketingSampler(dataset, batch_size=batch_size)
return DataLoader(dataset, batch_sampler=sampler)
def calculate_wer(s1, s2):
b = set(s1.split() + s2.split())
word2char = dict(zip(b, range(len(b))))
w1 = [chr(word2char[w]) for w in s1.split()]
w2 = [chr(word2char[w]) for w in s2.split()]
return Levenshtein.distance(''.join(w1), ''.join(w2)) / len(''.join(w2))
def calculate_cer(s1, s2):
s1, s2, = s1.replace(' ', ''), s2.replace(' ', '')
return Levenshtein.distance(s1, s2) / len(s2)
def train(model, ctc, optimizer, loader, checkpoint_per_batch, save_folder, save_name, fp16):
model.reset()
model.trainMode()
loader.reset()
if not os.path.exists(save_folder):
os.mkdir(save_folder)
for i, (data) in enumerate(loader):
inputs, input_percentages, targets, target_sizes, _ = data
if fp16:
inputs = gpuarray.to_gpu(inputs.astype(np.float16))
else:
inputs = gpuarray.to_gpu(inputs.astype(np.float32))
out = model(inputs)
out_len = gpuarray.to_gpu((out.shape[0] * input_percentages).astype(np.int32))
target_sizes = target_sizes.astype(np.int32)
targets = gpuarray.to_gpu(targets.astype(np.int32))
error, grad = ctc([out, out_len], [targets, target_sizes])
print('Training iter {} of {}, CTC: {}'.format(i + 1, len(loader), error))
optimizer.zeroGradParams()
model.backward(grad.astype(np.float32), updGrad=False)
optimizer.update()
if checkpoint_per_batch and i % checkpoint_per_batch == 0 and i > 0:
save_path = os.path.join(save_folder, '{}_iter_{}.hdf'.format(save_name, i))
model.save(hdf=save_path)
copyfile(save_path, os.path.join(save_folder, 'last.hdf'))
save_path = os.path.join(save_folder, '{}.hdf'.format(save_name))
model.save(hdf=save_path)
copyfile(save_path, os.path.join(save_folder, 'last.hdf'))
return model
def validate(model, loader, decoder, fp16):
loader.reset()
model.evalMode()
total_cer, total_wer = 0, 0
for i, (data) in enumerate(loader):
inputs, input_percentages, targets, target_sizes, input_file = data
if fp16:
inputs = gpuarray.to_gpu(inputs.astype(np.float16))
else:
inputs = gpuarray.to_gpu(inputs.astype(np.float32))
out = model(inputs)
out_len = (out.shape[0] * input_percentages).astype(np.int32)
decoded_output = [
decoder.decode(output, max_len=out_len[j]) for j, output in enumerate(np.moveaxis(out.get(), 0, 1))
]
print('\nValidation iter {} of {}'.format(i + 1, len(loader)))
wer, cer = 0, 0
for x in range(len(decoded_output)):
transcript, reference = decoded_output[x], input_file[x][1]
print('Transcript: {}\nReference: {}\nFilepath: {}'.format(transcript, reference, input_file[x][0]))
try:
wer += calculate_wer(transcript, reference)
cer += calculate_cer(transcript, reference)
except Exception as e:
print('Encountered exception {}'.format(e))
total_cer += cer
total_wer += wer
wer = total_wer / len(loader.dataset) * 100
cer = total_cer / len(loader.dataset) * 100
print('WER: {}'.format(wer))
print('CER: {}'.format(cer))
def main():
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--config', metavar='DIR', help='Path to train config', default='config.ini')
args = parser.parse_args()
config_path = args.config
if config_path is None:
raise Exception('Path to config file is None')
config = configparser.ConfigParser()
config.read(config_path, encoding='UTF-8')
sample_rate = int(config['Wav2Letter'].get('sample_rate'))
window_size = float(config['Wav2Letter'].get('window_size'))
window_stride = float(config['Wav2Letter'].get('window_stride'))
labels = config['Wav2Letter'].get('labels')[1:-1]
train_manifest = config['Train'].get('train_manifest', None)
val_manifest = config['Train'].get('val_manifest', None)
epochs = int(config['Train'].get('epochs'))
batch_size = int(config['Train'].get('batch_size'))
learning_rate = float(config['Train'].get('learning_rate'))
fp16 = bool(config['Train'].get('fp16'))
checkpoint_name = config['Train'].get('checkpoint_name')
checkpoint_per_batch = int(config['Train'].get('checkpoint_per_batch'))
save_folder = config['Train'].get('save_folder')
continue_from = config['Train'].get('continue_from')
train_loader, val_loader = None, None
if train_manifest is not None:
train_loader = get_data_loader(train_manifest, labels, sample_rate, window_size, window_stride, batch_size)
if val_manifest is not None:
val_loader = get_data_loader(val_manifest, labels, sample_rate, window_size, window_stride, batch_size)
nfft = int(sample_rate * window_size)
w2l = loadW2L(modelpath=continue_from, inmaps=(1 + nfft // 2), nlabels=len(labels))
if fp16:
w2l.calcMode(np.float16)
w2l.append(Cast(np.float16, np.float32))
w2l.append(MoveAxis(src=2, dst=0))
blank_index = [i for i in range(len(labels)) if labels[i] == '_'][0]
ctc = CTC(blank_index)
adam = Adam(alpha=learning_rate)
adam.setupOn(w2l, useGlobalState=True)
decoder = GreedyDecoder(labels, blank_index)
for epoch in range(epochs):
if train_manifest is not None:
print('Epoch {} of {}'.format(epoch + 1, epochs))
w2l = train(w2l, ctc, adam, train_loader, checkpoint_per_batch, save_folder,
'{}_{}'.format(checkpoint_name, epoch), fp16)
if val_manifest is not None:
validate(w2l, val_loader, decoder, fp16)
if __name__ == '__main__':
main()