-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
403 lines (307 loc) · 15.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
"""
BSD 3-Clause License
Copyright (c) 2018, NVIDIA Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import os
import time
import argparse
from shutil import copyfile
from itertools import chain
from collections import OrderedDict
from tqdm import tqdm
import torch
from torch.cuda import amp
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from tps import Handler
from model import load_model
from utils.data_utils import TextMelLoader, TextMelCollate, CustomSampler
from utils.distributed import apply_gradient_allreduce
from modules.optimizers import build_optimizer, build_scheduler, SchedulerTypes
from modules.loss_function import OverallLoss
from hparams import create_hparams
from utils import gradient_adaptive_factor
def reduce_tensor(tensor, n_gpus):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt /= n_gpus
return rt
def reduce_loss(loss, distributed_run, n_gpus):
return reduce_tensor(loss.data, n_gpus).item() if distributed_run else loss.item()
def calc_gaf(model, optimizer, loss1, loss2, max_gaf):
safe_loss = 0. * sum([x.sum() for x in model.parameters()])
gaf = gradient_adaptive_factor.calc_grad_adapt_factor(
loss1 + safe_loss, loss2 + safe_loss, model.parameters(), optimizer)
gaf = min(gaf, max_gaf)
return gaf
def init_distributed(hparams, n_gpus, rank, group_name):
print("Initializing Distributed")
# Initialize distributed communication
dist.init_process_group(backend=hparams.dist_backend, init_method=hparams.dist_url,
world_size=n_gpus, rank=rank, group_name=group_name)
print("Done initializing distributed")
def prepare_dataloaders(hparams, distributed_run=False):
# Get data, data loaders and collate function ready
if hparams.use_basic_handler:
text_handler = Handler(hparams.charset)
else:
text_handler = Handler.from_charset(hparams.charset, data_dir="data", silent=True)
trainset = TextMelLoader(text_handler, hparams.training_files, hparams)
valset = TextMelLoader(text_handler, hparams.validation_files, hparams)
collate_fn = TextMelCollate(hparams.n_frames_per_step)
if distributed_run:
train_sampler = DistributedSampler(trainset)
else:
train_sampler = CustomSampler(trainset, hparams.batch_size, hparams.shuffle, hparams.optimize, hparams.len_diff)
train_loader = DataLoader(trainset, num_workers=1, sampler=train_sampler,
batch_size=hparams.batch_size, pin_memory=False,
drop_last=False, collate_fn=collate_fn)
return train_loader, valset, collate_fn
def prepare_directories_and_logger(output_directory, log_directory, rank):
from utils.logger import Tacotron2Logger
if rank == 0:
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
os.chmod(output_directory, 0o775)
logger = Tacotron2Logger(os.path.join(output_directory, log_directory))
else:
logger = None
return logger
def warm_start_model(checkpoint_path, model, ignore_layers, ignore_mismatched_layers=False):
assert os.path.isfile(checkpoint_path)
print("Warm starting model from checkpoint '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
pretrained_dict = checkpoint_dict["state_dict"]
model_dict = model.state_dict()
# remove extra keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
if ignore_mismatched_layers:
auto_ignore_layers = []
for k, v in pretrained_dict.items():
if v.data.shape != model_dict[k].data.shape:
auto_ignore_layers.append(k)
print("Automatically ignored the following pretrained checkpoint keys: ", auto_ignore_layers)
ignore_layers.extend(auto_ignore_layers)
if len(ignore_layers) > 0:
pretrained_dict = {k: v for k, v in pretrained_dict.items()
if not any(layer in k for layer in ignore_layers)}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model
def load_checkpoint(checkpoint_path, model, optimizer, lr_scheduler, criterion, restore_lr=True):
assert os.path.isfile(checkpoint_path)
print("Loading checkpoint '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint_dict["state_dict"])
optimizer.load_state_dict(checkpoint_dict["optimizer"])
if criterion.mmi_criterion is not None:
criterion.mmi_criterion.load_state_dict(checkpoint_dict["mi_estimator"])
iteration = checkpoint_dict["iteration"]
if not restore_lr:
base_lr = lr_scheduler.get_last_lr()
for lr, param_group in zip(base_lr, optimizer.param_groups):
param_group["lr"] = lr
else:
lr_scheduler_params = checkpoint_dict.get("lr_scheduler", None)
if lr_scheduler_params is not None:
lr_scheduler.load_state_dict(lr_scheduler_params)
print("Loaded checkpoint '{}' from iteration {}" .format(
checkpoint_path, iteration))
return model, optimizer, lr_scheduler, criterion, iteration
def save_checkpoint(model, optimizer, lr_scheduler, criterion, iteration, hparams, filepath):
print("Saving model and optimizer state at iteration {} to {}".format(
iteration, filepath))
train_dict = {
"iteration": iteration,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"hparams": hparams.export()
}
if criterion.mmi_criterion is not None:
train_dict["mi_estimator"] = criterion.mmi_criterion.state_dict()
torch.save(train_dict, filepath)
def validate(model, criterion, valset, iteration, batch_size, collate_fn, logger, distributed_run, rank, n_gpus):
"""Handles all the validation scoring and printing"""
shuffle = not distributed_run
losses_dict = OrderedDict({key: [] for key in criterion.list})
model.eval()
with torch.no_grad():
val_sampler = DistributedSampler(valset) if distributed_run else None
val_loader = DataLoader(valset, sampler=val_sampler, num_workers=1,
shuffle=shuffle, batch_size=batch_size,
pin_memory=False, collate_fn=collate_fn)
val_loader = tqdm(val_loader, desc="Running validation...") if rank == 0 else val_loader
for i, batch in enumerate(val_loader):
inputs, alignments, inputs_ctc = model.parse_batch(batch)
outputs, decoder_outputs = model(inputs)
losses = criterion(
outputs, inputs,
alignments=alignments,
inputs_ctc=inputs_ctc,
decoder_outputs=decoder_outputs
)
for loss_name, loss_value in losses.items():
losses_dict[loss_name].append(loss_value)
num_batches = len(val_loader)
reduced_losses_dict = {key: [reduce_loss(l, distributed_run, n_gpus) for l in value]
for key, value in losses_dict.items()}
reduced_losses_dict = {key: sum(value) / num_batches for key, value in reduced_losses_dict.items()}
model.train()
if rank == 0:
print("Validation loss {}: {:9f}\n".format(iteration, reduced_losses_dict["overall/loss"]))
logger.log_validation(reduced_losses_dict, model, inputs, outputs, iteration, alignments)
return reduced_losses_dict["overall/loss"]
def train(hparams, distributed_run=False, rank=0, n_gpus=None):
"""Training and validation logging results to tensorboard and stdout
"""
if distributed_run:
assert n_gpus is not None
torch.manual_seed(hparams.seed)
torch.cuda.manual_seed(hparams.seed)
model = load_model(hparams, distributed_run)
criterion = OverallLoss(hparams)
if criterion.mmi_criterion is not None:
parameters = chain(model.parameters(), criterion.mmi_criterion.parameters())
else:
parameters = model.parameters()
optimizer = build_optimizer(parameters, hparams)
lr_scheduler = build_scheduler(optimizer, hparams)
if distributed_run:
model = apply_gradient_allreduce(model)
scaler = amp.GradScaler(enabled=hparams.fp16_run)
logger = prepare_directories_and_logger(hparams.output_dir, hparams.log_dir, rank)
copyfile(hparams.path, os.path.join(hparams.output_dir, 'hparams.yaml'))
train_loader, valset, collate_fn = prepare_dataloaders(hparams, distributed_run)
# Load checkpoint if one exists
iteration = 0
epoch_offset = 0
if hparams.checkpoint is not None:
if hparams.warm_start:
model = warm_start_model(
hparams.checkpoint, model, hparams.ignore_layers, hparams.ignore_mismatched_layers)
else:
model, optimizer, lr_scheduler, mmi_criterion, iteration = load_checkpoint(
hparams.checkpoint, model, optimizer, lr_scheduler, criterion, hparams.restore_scheduler_state
)
iteration += 1 # next iteration is iteration + 1
epoch_offset = max(0, int(iteration / len(train_loader)))
model.train()
# ================ MAIN TRAINNIG LOOP! ===================
for epoch in range(epoch_offset, hparams.epochs):
print("Epoch: {}".format(epoch))
for i, batch in enumerate(train_loader):
start = time.perf_counter()
model.zero_grad()
inputs, alignments, inputs_ctc = model.parse_batch(batch)
with amp.autocast(enabled=hparams.fp16_run):
outputs, decoder_outputs = model(inputs)
losses = criterion(
outputs, inputs,
alignments=alignments,
inputs_ctc=inputs_ctc,
decoder_outputs=decoder_outputs
)
if hparams.use_mmi and hparams.use_gaf and i % gradient_adaptive_factor.UPDATE_GAF_EVERY_N_STEP == 0:
mi_loss = losses["mi/loss"]
overall_loss = losses["overall/loss"]
gaf = calc_gaf(model, optimizer, overall_loss, mi_loss, hparams.max_gaf)
losses["mi/loss"] = gaf * mi_loss
losses["overall/loss"] = overall_loss - mi_loss * (1 - gaf)
reduced_losses = {key: reduce_loss(value, distributed_run, n_gpus) for key, value in losses.items()}
loss = losses["overall/loss"]
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hparams.grad_clip_thresh)
scaler.step(optimizer)
scaler.update()
if rank == 0:
learning_rate = lr_scheduler.get_last_lr()[0]
duration = time.perf_counter() - start
print("Iteration {} ({} epoch): overall loss {:.6f} Grad Norm {:.6f} {:.2f}s/it LR {:.3E}".format(
iteration, epoch, reduced_losses["overall/loss"], grad_norm, duration, learning_rate))
grad_norm = None if torch.isnan(grad_norm) or torch.isinf(grad_norm) else grad_norm
logger.log_training(reduced_losses, grad_norm, learning_rate, duration, iteration)
if iteration % hparams.iters_per_checkpoint == 0:
validate(model, criterion, valset, iteration, hparams.batch_size, collate_fn, logger,
distributed_run, rank, n_gpus)
if rank == 0:
checkpoint = os.path.join(
hparams.output_dir, "checkpoint_{}".format(iteration))
save_checkpoint(model, optimizer, lr_scheduler, criterion, iteration, hparams, checkpoint)
iteration += 1
if hparams.lr_scheduler == SchedulerTypes.cyclic:
lr_scheduler.step()
if not hparams.lr_scheduler == SchedulerTypes.cyclic:
if hparams.lr_scheduler == SchedulerTypes.plateau:
lr_scheduler.step(
validate(model, criterion, valset, iteration, hparams.batch_size, collate_fn,
logger, distributed_run, rank, n_gpus)
)
else:
lr_scheduler.step()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--hparams_path", type=str, default="./data/hparams.yaml",
required=False, help="hparams path")
parser.add_argument("-d", "--distributed_run", action="store_true",
required=False, help="switch script to distributed work mode")
parser.add_argument("--gpus_ranks", type=str, default="",
required=False, help="gpu's indices for distributed run (separated by commas)")
parser.add_argument("--gpu_idx", type=int, default=0,
required=False, help="device index for the current run")
parser.add_argument("--group_name", type=str, default="group_name",
required=False, help="Distributed group name")
args = parser.parse_args()
hparams = create_hparams(args.hparams_path)
hparams.path = args.hparams_path
n_gpus = 0
rank = 0
if args.distributed_run:
assert args.gpus_ranks
gpus_ranks = {elem: i for i, elem in enumerate(int(elem) for elem in args.gpus_ranks.split(","))}
n_gpus = len(gpus_ranks)
rank = gpus_ranks[args.gpu_idx]
device = "cuda:{}".format(args.gpu_idx)
else:
device = hparams.device.split(":")
device = device[0] + ":0" if len(device) == 1 else ":".join(device)
device = torch.device(device)
if device.type != "cpu":
assert torch.cuda.is_available()
torch.cuda.set_device(device)
if args.distributed_run:
init_distributed(hparams, n_gpus, rank, args.group_name)
torch.backends.cudnn.enabled = hparams.cudnn_enabled
torch.backends.cudnn.benchmark = hparams.cudnn_benchmark
else:
assert not args.distributed_run
hparams.learning_rate = float(hparams.learning_rate)
hparams.weight_decay = float(hparams.weight_decay)
print("FP16 Run:", hparams.fp16_run)
print("Distributed Run:", args.distributed_run)
print("cuDNN Enabled:", hparams.cudnn_enabled)
print("cuDNN Benchmark:", hparams.cudnn_benchmark)
train(hparams, distributed_run=args.distributed_run, rank=rank, n_gpus=n_gpus)