forked from ikostrikov/rlpd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_finetuning_pixels.py
234 lines (205 loc) · 7.53 KB
/
train_finetuning_pixels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#! /usr/bin/env python
import dmcgym
import gym
import numpy as np
import tqdm
from absl import app, flags
from flax.core import FrozenDict
from ml_collections import config_flags
import wandb
from rlpd.agents import DrQLearner
from rlpd.data import MemoryEfficientReplayBuffer, ReplayBuffer
from rlpd.data.vd4rl_datasets import VD4RLDataset
from rlpd.evaluation import evaluate
from rlpd.wrappers import WANDBVideo, wrap_pixels
FLAGS = flags.FLAGS
flags.DEFINE_string("project_name", "rlpd_pixels", "wandb project name.")
flags.DEFINE_string("env_name", "cheetah-run-v0", "Environment name.")
flags.DEFINE_string(
"dataset_level", "expert", "Dataset level (e.g., random, expert, etc.)."
)
flags.DEFINE_string("dataset_path", None, "Path to dataset. If None, uses '~/.vd4rl'.")
flags.DEFINE_integer("dataset_size", 500_000, "How many samples to load")
flags.DEFINE_float("offline_ratio", 0.5, "Offline ratio.")
flags.DEFINE_integer("seed", 42, "Random seed.")
flags.DEFINE_integer("eval_episodes", 10, "Number of episodes used for evaluation.")
flags.DEFINE_integer("log_interval", 1000, "Logging interval.")
flags.DEFINE_integer("eval_interval", 5000, "Eval interval.")
flags.DEFINE_integer("batch_size", 256, "Mini batch size.")
flags.DEFINE_integer("max_steps", int(5e5), "Number of training steps.")
flags.DEFINE_integer(
"start_training", int(1e3), "Number of training steps to start training."
)
flags.DEFINE_integer("image_size", 64, "Image size.")
flags.DEFINE_integer("num_stack", 3, "Stack frames.")
flags.DEFINE_integer(
"replay_buffer_size", None, "Number of training steps to start training."
)
flags.DEFINE_integer(
"action_repeat", None, "Action repeat, if None, uses 2 or PlaNet default values."
)
flags.DEFINE_boolean("tqdm", True, "Use tqdm progress bar.")
flags.DEFINE_boolean(
"memory_efficient_replay_buffer", True, "Use a memory efficient replay buffer."
)
flags.DEFINE_boolean("save_video", False, "Save videos during evaluation.")
flags.DEFINE_string("save_dir", None, "Directory to save checkpoints.")
flags.DEFINE_integer("utd_ratio", 1, "Update to data ratio.")
config_flags.DEFINE_config_file(
"config",
"configs/drq_config.py",
"File path to the training hyperparameter configuration.",
lock_config=False,
)
PLANET_ACTION_REPEAT = {
"cartpole-swingup-v0": 8,
"reacher-easy-v0": 4,
"cheetah-run-v0": 4,
"finger-spin-v0": 2,
"ball_in_cup-catch-v0": 4,
"walker-walk-v0": 2,
}
def combine(one_dict, other_dict):
combined = {}
for k, v in one_dict.items():
if isinstance(v, FrozenDict):
if len(v) == 0:
combined[k] = v
else:
combined[k] = combine(v, other_dict[k])
else:
tmp = np.empty(
(v.shape[0] + other_dict[k].shape[0], *v.shape[1:]), dtype=v.dtype
)
tmp[0::2] = v
tmp[1::2] = other_dict[k]
combined[k] = tmp
return FrozenDict(combined)
def main(_):
wandb.init(project=FLAGS.project_name)
wandb.config.update(FLAGS)
action_repeat = FLAGS.action_repeat or PLANET_ACTION_REPEAT.get(FLAGS.env_name, 2)
def wrap(env):
if "quadruped" in FLAGS.env_name:
camera_id = 2
else:
camera_id = 0
return wrap_pixels(
env,
action_repeat=action_repeat,
image_size=FLAGS.image_size,
num_stack=FLAGS.num_stack,
camera_id=camera_id,
)
env = gym.make(FLAGS.env_name)
env, pixel_keys = wrap(env)
env = gym.wrappers.RecordEpisodeStatistics(env, deque_size=1)
if FLAGS.save_video:
env = WANDBVideo(env)
env.seed(FLAGS.seed)
ds = VD4RLDataset(
env,
FLAGS.dataset_level,
pixel_keys=pixel_keys,
capacity=FLAGS.dataset_size,
dataset_path=FLAGS.dataset_path,
)
ds_iterator = ds.get_iterator(
sample_args={
"batch_size": int(FLAGS.batch_size * FLAGS.utd_ratio * FLAGS.offline_ratio),
"pack_obs_and_next_obs": True,
}
)
eval_env = gym.make(FLAGS.env_name)
eval_env, _ = wrap(eval_env)
eval_env.seed(FLAGS.seed + 42)
replay_buffer_size = FLAGS.replay_buffer_size or FLAGS.max_steps // action_repeat
if FLAGS.memory_efficient_replay_buffer:
replay_buffer = MemoryEfficientReplayBuffer(
env.observation_space, env.action_space, replay_buffer_size
)
replay_buffer_iterator = replay_buffer.get_iterator(
sample_args={
"batch_size": int(
FLAGS.batch_size * FLAGS.utd_ratio * (1 - FLAGS.offline_ratio)
),
"pack_obs_and_next_obs": True,
}
)
else:
replay_buffer = ReplayBuffer(
env.observation_space, env.action_space, replay_buffer_size
)
replay_buffer_iterator = replay_buffer.get_iterator(
sample_args={
"batch_size": int(
FLAGS.batch_size * FLAGS.utd_ratio * (1 - FLAGS.offline_ratio)
),
}
)
replay_buffer.seed(FLAGS.seed)
# Crashes on some setups if agent is created before replay buffer.
kwargs = dict(FLAGS.config)
model_cls = kwargs.pop("model_cls")
agent = globals()[model_cls].create(
FLAGS.seed,
env.observation_space,
env.action_space,
pixel_keys=pixel_keys,
**kwargs,
)
observation, done = env.reset(), False
for i in tqdm.tqdm(
range(1, FLAGS.max_steps // action_repeat + 1),
smoothing=0.1,
disable=not FLAGS.tqdm,
):
if i < FLAGS.start_training:
action = env.action_space.sample()
else:
action, agent = agent.sample_actions(observation)
next_observation, reward, done, info = env.step(action)
if not done or "TimeLimit.truncated" in info:
mask = 1.0
else:
mask = 0.0
replay_buffer.insert(
dict(
observations=observation,
actions=action,
rewards=reward,
masks=mask,
dones=done,
next_observations=next_observation,
)
)
observation = next_observation
if done:
observation, done = env.reset(), False
for k, v in info["episode"].items():
decode = {"r": "return", "l": "length", "t": "time"}
wandb.log({f"training/{decode[k]}": v}, step=i * action_repeat)
if i >= FLAGS.start_training:
online_batch = next(replay_buffer_iterator)
offline_batch = next(ds_iterator)
batch = combine(offline_batch, online_batch)
agent, update_info = agent.update(batch, FLAGS.utd_ratio)
if i % FLAGS.log_interval == 0:
for k, v in update_info.items():
wandb.log({f"training/{k}": v}, step=i * action_repeat)
if i % FLAGS.eval_interval == 0:
eval_info = evaluate(
agent,
eval_env,
num_episodes=FLAGS.eval_episodes,
save_video=FLAGS.save_video,
)
for k, v in eval_info.items():
wandb.log({f"evaluation/{k}": v}, step=i * action_repeat)
if FLAGS.save_dir is not None:
from flax.training import checkpoints
checkpoints.save_checkpoint(
FLAGS.save_dir, target=agent, step=i * action_repeat, overwrite=True
)
if __name__ == "__main__":
app.run(main)