-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
158 lines (130 loc) · 5.56 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import uuid
from pathlib import Path
import fire
import pytorch_lightning as pl
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import (EarlyStopping, LearningRateMonitor,
ModelCheckpoint)
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.strategies import DataParallelStrategy, DDPStrategy
from usat.core.serialization import read_yaml
from usat.utils.builder import TASK
from usat.utils.constants import WANDB_ENTITY, WANDB_PROJECT
def train(cfg):
cfg = read_yaml(cfg)
trainer_cfg = cfg['training']['trainer']
random_seed = cfg.get('random_seed')
if random_seed:
pl.seed_everything(random_seed)
# get task
task = TASK.build(cfg)
# GPU
gpus = trainer_cfg.get('gpus', 1)
strategy = trainer_cfg.get('strategy', None)
unused_params = trainer_cfg.get('unused_params', False)
num_gpu = gpus if isinstance(gpus, int) else len(gpus)
if gpus == -1 or num_gpu > 1:
if strategy == 'dp':
strategy = DataParallelStrategy()
if strategy == 'ddp':
strategy = DDPStrategy(find_unused_parameters=unused_params)
else:
strategy = None
# Precision
mixed_precision = cfg.get("mixed_precision", False)
if mixed_precision:
precision = 16
else:
precision = 32
# Logging
save_dir = trainer_cfg.get('save_dir', 'results/default')
exp_name = cfg.get('exp_name', f'exp_{str(uuid.uuid1())[:8]}')
version = cfg.get('version', 0)
wandb_entity = cfg.get('w&b_entity', WANDB_ENTITY)
wandb_project = cfg.get('w&b_project', WANDB_PROJECT)
logger = WandbLogger(name=f'{exp_name}_v{version}', save_dir=save_dir,
project=wandb_project, entity=wandb_entity)
# Callbacks - Checkpointing and early stop
save_top_k = trainer_cfg.get('save_top_k', 5)
monitor_metric = trainer_cfg.get('monitor_metric', 'Eval_Loss')
monitor_mode = trainer_cfg.get('monitor_mode', 'min')
patience = trainer_cfg.get('patience', 10)
ckpt_dir = Path(save_dir)/ exp_name/ f'version_{version}'/ 'ckpt'
ckpt_cb = ModelCheckpoint(dirpath=ckpt_dir, save_top_k=save_top_k,
verbose=True, monitor=monitor_metric,
mode=monitor_mode, every_n_epochs=1)
earlystop_cb = EarlyStopping(monitor=monitor_metric,
patience=patience,
verbose=True, mode=monitor_mode)
lr_monitor = LearningRateMonitor(logging_interval='step')
# Trainer config
gradient_clip_val = trainer_cfg.get('gradient_clip_val', 0)
limit_train_batches = trainer_cfg.get('limit_train_batches', 1.0)
enable_model_summary = trainer_cfg.get('enable_model_summary', False)
max_epochs = trainer_cfg.get('max_epochs', 100)
accumulated_batches = trainer_cfg.get('accumulated_batches', 1)
resume_checkpoint = trainer_cfg.get('resume_ckpt', None)
trainer = Trainer(accelerator="gpu",
precision=precision,
devices=gpus,
strategy=strategy,
logger=logger,
callbacks=[ckpt_cb, earlystop_cb, lr_monitor],
gradient_clip_val=gradient_clip_val,
limit_train_batches=limit_train_batches,
enable_model_summary = enable_model_summary,
max_epochs=max_epochs,
accumulate_grad_batches=accumulated_batches,
log_every_n_steps=5)
if resume_checkpoint:
trainer.fit(task, ckpt_path=resume_checkpoint)
else:
trainer.fit(task)
def test(cfg):
cfg = read_yaml(cfg)
trainer_cfg = cfg['training']['trainer']
random_seed = cfg.get('random_seed')
if random_seed:
pl.seed_everything(random_seed)
# get task
task = TASK.build(cfg)
# GPU
gpus = trainer_cfg.get('gpus', 1)
strategy = trainer_cfg.get('strategy', None)
unused_params = trainer_cfg.get('unused_params', False)
num_gpu = gpus if isinstance(gpus, int) else len(gpus)
if gpus == -1 or num_gpu > 1:
if strategy == 'dp':
strategy = DataParallelStrategy()
if strategy == 'ddp':
strategy = DDPStrategy(find_unused_parameters=unused_params)
else:
strategy = None
# Precision
mixed_precision = cfg.get("mixed_precision", False)
if mixed_precision:
precision = 16
else:
precision = 32
# Trainer config
gradient_clip_val = trainer_cfg.get('gradient_clip_val', 0)
limit_train_batches = trainer_cfg.get('limit_train_batches', 1.0)
enable_model_summary = trainer_cfg.get('enable_model_summary', False)
max_epochs = trainer_cfg.get('max_epochs', 100)
accumulated_batches = trainer_cfg.get('accumulated_batches', 1)
test_checkpoint = trainer_cfg.get('test_ckpt', None)
trainer = Trainer(accelerator="gpu",
precision=precision,
devices=1,
num_nodes=1,
strategy=strategy,
logger=False,
gradient_clip_val=gradient_clip_val,
limit_train_batches=limit_train_batches,
enable_model_summary = enable_model_summary,
max_epochs=max_epochs,
accumulate_grad_batches=accumulated_batches,
log_every_n_steps=5)
trainer.test(task, ckpt_path=test_checkpoint)
if __name__ == "__main__":
fire.Fire()