-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbarcode_gen.py
191 lines (165 loc) · 7.86 KB
/
barcode_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import time
import gs
import numpy as np
from collections import defaultdict
import torch
import torch.nn as nn
import torchvision.models as models
from torch.utils.data import DataLoader
from tqdm import tqdm
import json
from args import BarcodeArgParser
from utils import sample_noise, load_models, load_optimizer, visualize, save_model, softmax_classes, argmax_classes, labels_to_onehot, get_dataset_args, dict_to_labels, ce_with_probs, create_dataset_splits
rs = np.random.RandomState(1)
def compare_embedding_spaces_real(args, plot=False):
# Doesn't work (just output same diff 0) for vgg embeddings that are 4096 and for 64, pretrained=False or pretrained=True
nc = 1 if args.dataset_name == "dsprites" else 3
if args.dataset_name == "dsprites":
from disentanglement_lib.data.ground_truth.dsprites import DSprites
dataset = DSprites(list(range(1,6)))
elif "celeba" in args.dataset_name:
from datasets.classification_dataset import ClassificationDataset
dataset = ClassificationDataset(args.dataset_name, 128)
num_samples = 100 if "hq" in args.dataset_name else 1000
vgg = models.vgg16(pretrained='celeba' in args.dataset_name)
vgg.classifier._modules['3'] = nn.Linear(in_features=4096, out_features=64)
vgg.features[0] = nn.Conv2d(nc, 64, kernel_size=3, stride=1, padding=1, bias=False)
remove_layers = ['4', '5', '6']
for l in remove_layers:
vgg.classifier._modules[l] = nn.Identity()
vgg.eval()
correctness = defaultdict(list)
if args.dataset_name == "dsprites":
samples = dataset.sample_factors(num_samples, rs)
factors_num_values = dataset.factors_num_values
elif "celeba" in args.dataset_name:
factors_num_values = [2 for _ in range(40)]
results_dict = dict([(i, {}) for i, _ in enumerate(factors_num_values)])
for cur_factor, num_value in enumerate(factors_num_values):
for cur_value in range(num_value):
obslist = []
if args.dataset_name == "dsprites":
for s in tqdm(samples):
ss = s.copy()
ss[cur_factor] = cur_value
obs = dataset.sample_observations_from_factors(ss, rs)[0]
obslist.append(obs)
obslist = torch.from_numpy(np.array(obslist)).permute(0,3,1,2)
elif "celeba" in args.dataset_name:
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
for image, label in dataloader:
if label[0][cur_factor] == cur_value:
print(len(obslist), end=",")
obslist.append(image[0])
if len(obslist) >= num_samples:
break
obslist = torch.stack(obslist)
print(f'embedding...')
with torch.no_grad():
embed = vgg(obslist).detach().numpy()
print('starting rlts...')
rlts = gs.rlts(embed, L_0=args.L_0, gamma=args.gamma, n=100)
if plot:
import matplotlib.pyplot as plt
gs.fancy_plot(mrlt, label=f'MRLT of {cur_factor}_{cur_value}')
# plt.xlim([0, 30])
plt.legend()
plt.savefig(f"{args.gs_results_dir}/plots/embedding_space_real_{args.dataset_name}_{cur_factor}_{cur_value}.png")
plt.close()
results_dict[cur_factor][cur_value] = rlts.tolist()
# Write to file
with open(args.results_file, "w+") as f:
json.dump(results_dict, f)
print(f'Done')
def compare_embedding_spaces_fake(args, plot=False):
# Doesn't work (just output same diff 0) for vgg embeddings that are 4096 and for 64, pretrained=False or pretrained=True
nc = 1 if args.dataset_name == "dsprites" else 3
dataset, ns, image_shape, npix, nc, ncls, factor_id2name = get_dataset_args(args, return_factor_name_map=args.dataset_name == "celeba")
decoder_params = {'dataset_name': args.dataset_name}
decoder = load_models(
args, ns, npix, nc, ncls,
model_types=["decoder"],
model_params=[decoder_params],
model_ckpts=[args.decoder_ckpt]
)
decoder.eval()
num_samples = 100 if "hq" in args.dataset_name else 1000
num_batches = 4 if args.decoder_model == 'WGAN' else 1
batch_size = num_samples // num_batches
assert num_samples / num_batches == num_samples // num_batches, f'num samples needs to be divisible by num batches'
vgg = models.vgg16(pretrained='celeba' in args.dataset_name)
vgg.classifier._modules['3'] = nn.Linear(in_features=4096, out_features=64)
vgg.features[0] = nn.Conv2d(nc, 64, kernel_size=3, stride=1, padding=1, bias=False)
remove_layers = ['4', '5', '6']
for l in remove_layers:
vgg.classifier._modules[l] = nn.Identity()
vgg.eval()
vgg.to(args.device)
correctness = defaultdict(list)
samples = torch.Tensor(np.random.randn(num_samples, args.nz)).to(args.device)
factors_num_values = args.nz
results_dict = dict([(i, {}) for i in range(args.nz)])
num_value = 10
for cur_factor in range(args.nz):
for _ in range(num_value):
cur_value = np.asscalar(np.random.randn(1))
embeds = []
for b in range(num_batches):
obslist = []
for z in tqdm(samples[batch_size * b:batch_size * (b+1)]):
zz = z.clone()
zz[cur_factor] = cur_value
obs = decoder(zz.view(1, -1))
obslist.append(obs)
obslist = torch.cat(obslist)
print(f'embedding...')
with torch.no_grad():
embed = vgg(obslist).cpu().detach().numpy()
embeds.append(embed)
embeds = np.concatenate(embeds)
print('starting rlts...')
rlts = gs.rlts(embeds, L_0=args.L_0, gamma=args.gamma, n=100)
if plot:
import matplotlib.pyplot as plt
gs.fancy_plot(mrlt, label=f'MRLT of {cur_factor}_{cur_value}')
# plt.xlim([0, 30])
plt.legend()
plt.savefig(f"{args.gs_results_dir}/plots/embedding_space_fake_{args.decoder_model}_{args.dataset_name}_{cur_factor}_{cur_value}.png")
plt.close()
results_dict[cur_factor][cur_value] = rlts.tolist()
# Write to file
with open(args.results_file, "w") as f:
json.dump(results_dict, f)
print(f'Done')
if __name__ == "__main__":
parser = BarcodeArgParser()
args_ = parser.parse_args()
if args_.gamma is None:
args_.gamma = 1/128
if args_.L_0 is None:
args_.L_0 = 100
if args_.real:
results_file = f"{args_.gs_results_dir}/barcodes/real_{args_.dataset_name}"
if args_.suffix is not None:
results_file += f"_{args_.suffix}"
if os.path.exists(f'{results_file}.json') and not args_.override:
# Do not override
timestamp = str(time.time()).replace('.','')
args_.results_file = f"{results_file}_{timestamp}.json"
else:
args_.results_file = f"{results_file}.json"
print(f'(Over)writing to barcodes file {args_.results_file}')
compare_embedding_spaces_real(args_)
else:
results_file = f"{args_.gs_results_dir}/barcodes/fake_{args_.decoder_model}_{args_.dataset_name}"
if args_.suffix is not None:
results_file += f"_{args_.suffix}"
if os.path.exists(f'{results_file}.json') and not args_.override:
# Do not override
timestamp = str(time.time()).replace('.','')
args_.results_file = f"{results_file}_{timestamp}.json"
else:
args_.results_file = f"{results_file}.json"
print(f'(Over)writing to barcodes file {args_.results_file}')
compare_embedding_spaces_fake(args_)