-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdemo.py
123 lines (106 loc) · 5.79 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# --------------------------------------------------------------
# SNIPER: Efficient Multi-Scale Training
# Licensed under The Apache-2.0 License [see LICENSE for details]
# SNIPER demo
# by Mahyar Najibi
# --------------------------------------------------------------
import init
import matplotlib
matplotlib.use('Agg')
from configs.faster.default_configs import config, update_config, update_config_from_list
import mxnet as mx
import argparse
from train_utils.utils import create_logger, load_param
import os
from PIL import Image
from iterators.MNIteratorTest import MNIteratorTest
from easydict import EasyDict
from inference import Tester
from symbols.faster import *
os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0'
def parser():
arg_parser = argparse.ArgumentParser('SNIPER demo module')
arg_parser.add_argument('--cfg', dest='cfg', help='Path to the config file',
default='configs/faster/sniper_arm_deepv.yml',type=str)
arg_parser.add_argument('--save_prefix', dest='save_prefix', help='Prefix used for snapshotting the network',
default='SNIPER', type=str)
arg_parser.add_argument('--im_path', dest='im_path', help='Path to the image', type=str,
default='data/demo/demo.jpg')
arg_parser.add_argument('--set', dest='set_cfg_list', help='Set the configuration fields from command line',
default=None, nargs=argparse.REMAINDER)
return arg_parser.parse_args()
def main():
args = parser()
update_config(args.cfg)
if args.set_cfg_list:
update_config_from_list(args.set_cfg_list)
# Use just the first GPU for demo
context = [mx.gpu(int(config.gpus[0]))]
if not os.path.isdir(config.output_path):
os.mkdir(config.output_path)
# Get image dimensions
width, height = Image.open(args.im_path).size
# Pack image info
roidb = [{'image': args.im_path, 'width': width, 'height': height, 'flipped': False}]
# Creating the Logger
print config.output_path
logger, output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set)
# Pack db info
db_info = EasyDict()
db_info.name = 'coco'
db_info.result_path = 'data/demo'
# Categories the detector trained for:
db_info.classes = [u'BG', u'person', u'bicycle', u'car', u'motorcycle', u'airplane',
u'bus', u'train', u'truck', u'boat', u'traffic light', u'fire hydrant',
u'stop sign', u'parking meter', u'bench', u'bird', u'cat', u'dog', u'horse', u'sheep', u'cow',
u'elephant', u'bear', u'zebra', u'giraffe', u'backpack', u'umbrella', u'handbag', u'tie',
u'suitcase', u'frisbee', u'skis', u'snowboard', u'sports\nball', u'kite', u'baseball\nbat',
u'baseball glove', u'skateboard', u'surfboard', u'tennis racket', u'bottle', u'wine\nglass',
u'cup', u'fork', u'knife', u'spoon', u'bowl', u'banana', u'apple', u'sandwich', u'orange',
u'broccoli', u'carrot', u'hot dog', u'pizza', u'donut', u'cake', u'chair', u'couch',
u'potted plant', u'bed', u'dining table', u'toilet', u'tv', u'laptop', u'mouse', u'remote',
u'keyboard', u'cell phone', u'microwave', u'oven', u'toaster', u'sink', u'refrigerator', u'book',
u'clock', u'vase', u'scissors', u'teddy bear', u'hair\ndrier', u'toothbrush']
db_info.num_classes = len(db_info.classes)
# Create the model
sym_def = eval('{}.{}'.format(config.symbol, config.symbol))
sym_inst = sym_def(n_proposals=400, test_nbatch=1)
sym = sym_inst.get_symbol_rcnn(config, is_train=False)
test_iter = MNIteratorTest(roidb=roidb, config=config, batch_size=1, nGPUs=1, threads=1,
crop_size=None, test_scale=config.TEST.SCALES[0],
num_classes=db_info.num_classes)
# Create the module
shape_dict = dict(test_iter.provide_data_single)
sym_inst.infer_shape(shape_dict)
mod = mx.mod.Module(symbol=sym,
context=context,
data_names=[k[0] for k in test_iter.provide_data_single],
label_names=None)
mod.bind(test_iter.provide_data, test_iter.provide_label, for_training=False)
# Initialize the weights
print output_path, args.save_prefix, config.TEST.TEST_EPOCH
model_prefix = os.path.join(output_path, args.save_prefix)
arg_params, aux_params = load_param(model_prefix, config.TEST.TEST_EPOCH,
convert=True, process=True)
mod.init_params(arg_params=arg_params, aux_params=aux_params)
# Create the tester
tester = Tester(mod, db_info, roidb, test_iter, cfg=config, batch_size=1)
# Sequentially do detection over scales
# NOTE: if you want to perform detection on multiple images consider using main_test which is parallel and faster
all_detections= []
# config.TEST.SCALES = [(1400, 2000), (800, 1280), (480, 512)]
# config.TEST.VALID_RANGES = [(-1, -1), (32, 180), (75, -1)]
print config.TEST.SCALES, config.TEST.VALID_RANGES
for s in config.TEST.SCALES:
# Set tester scale
tester.set_scale(s)
# Perform detection
all_detections.append(tester.get_detections(vis=False, evaluate=False, cache_name=None))
# Aggregate results from multiple scales and perform NMS
tester = Tester(None, db_info, roidb, None, cfg=config, batch_size=1)
file_name, out_extension = os.path.splitext(os.path.basename(args.im_path))
all_detections = tester.aggregate(all_detections, vis=True, cache_name=None, vis_path='./data/demo/',
vis_name='{}_detections'.format(file_name), vis_ext=out_extension)
return all_detections
if __name__ == '__main__':
main()