-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathholo_sum.pyx
113 lines (95 loc) · 4.95 KB
/
holo_sum.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#
# This file is part of pyHoloGen.
# Copyright (C) 2015-2018 Svetlin Tassev
# Braintree High School
# Harvard-Smithsonian Center for Astrophysics
#
# pyHoloGen is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
import numpy as np
cimport numpy as np
cimport cython
from libc.math cimport sin, cos, acos, exp, sqrt, fabs, M_PI
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
@cython.embedsignature(True)
def transform_with_phase(np.ndarray[np.float64_t, ndim=1] object_position_x,
np.ndarray[np.float64_t, ndim=1] object_position_y,
np.ndarray[np.float64_t, ndim=1] object_position_z,
np.ndarray[np.float64_t, ndim=1] holo_position_x,
np.ndarray[np.float64_t, ndim=1] holo_position_y,
np.ndarray[np.float64_t, ndim=1] one_r, # real value of compnlex amplitude at object location
np.ndarray[np.float64_t, ndim=1] one_i, # imag ...
np.ndarray[np.float64_t, ndim=1] two_r, # real values of complex ampl at hologram location
np.ndarray[np.float64_t, ndim=1] two_i, # imag ...
np.int32_t n_objects,
np.int32_t npix,
np.int32_t ATTENUATION,
np.float64_t POINT_SOURCE_DISTANCE,
np.float64_t wavelength,np.float64_t res_x,np.float64_t res_y,
np.int32_t DIR
):
cdef int i, j, k
cdef np.float64_t z_atten,dist,pi2,xk,yk,zk,xi,yj,distj,disti,distk,z_attenk,x
cdef np.float64_t phase_r,phase_i,one_rk,one_ik, distTmp
pi2=2.0*3.141592653589793238462643383279502884197169/wavelength #writing many digits of pi = soothing.
from cython.parallel cimport prange,parallel
cdef int nthreads
from multiprocessing import cpu_count
nthreads=cpu_count()
#print 'nthreads = ', nthreads
if (DIR==1):
one_r*=0.0
one_i*=0.0
pi2*=-1.0
else:
two_r*=0.0
two_i*=0.0
with nogil, parallel(num_threads=nthreads):
for k in prange(n_objects,schedule='static',chunksize=n_objects//nthreads):
xk=object_position_x[k]
yk=object_position_y[k]
zk=object_position_z[k]
distk=zk*zk
z_atten=1.0
for i in range(npix):
xi=holo_position_x[i]
yj=holo_position_y[i]
disti=(xk-xi)*(xk-xi)
distj=(yk-yj)*(yk-yj)
dist=distk+disti+distj
dist=sqrt(dist)
if (ATTENUATION):
x=pi2/zk
# This is gaussian attenuation, divided by distance.
# The Gaussian gives pretty good image of the cube on transparent printer paper.
# Slide-based holos look great with this attenuation turned on.
# Tried other types of attenuation but this seems to work best.
z_atten=(exp(-x*x*(disti*res_x*res_x+distj*res_y*res_y)/2.)+0.05)/zk #0.05 is the minimum attenuation. Somewhat randomly chosen,though 10x smaller gives too much noise far from center at 600dpi
if (POINT_SOURCE_DISTANCE<100.):
distTmp=sqrt(POINT_SOURCE_DISTANCE**2+xi*xi+yj*yj)-POINT_SOURCE_DISTANCE
dist= dist + distTmp
elif (POINT_SOURCE_DISTANCE<1.e7):
dist= dist + (xi*xi+yj*yj)/(2.*POINT_SOURCE_DISTANCE)
dist=dist*pi2
phase_r= cos(dist)
phase_i= sin(dist)
if (DIR==2): # send waves from source objects to hologram plane.
two_r[i]+=(phase_r*one_r[k]-phase_i*one_i[k])/z_atten
two_i[i]+=(phase_i*one_r[k]+phase_r*one_i[k])/z_atten
else: # send waves from hologram to positions of hologram images. Inverse of above
one_r[k]+=( phase_r*two_r[i]+phase_i*two_i[i])*z_atten
one_i[k]+=(-phase_i*two_r[i]+phase_r*two_i[i])*z_atten