-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathldc_staggered_fvm_exp.c
268 lines (260 loc) · 8.02 KB
/
ldc_staggered_fvm_exp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
//Staggered Finite-Volume approach to solve Lid Driven Cavity problem
// using Euler Explicit Method
#include<stdio.h>
#include<math.h>
//velocity boundary conditions
void vel_bcs(float uo[131][131],float vo[131][131],float po[131][131],int m,int n)
{
int i,j;
for(j=1;j<=n-1;j++)
{
uo[0][j]=0.0; // left boundary conditions
uo[m-1][j]=0.0; //right boundary conditions
}
for(j=0;j<=n-1;j++)
{
vo[0][j]=-vo[1][j]; // left boundary conditions
vo[m][j]=-vo[m-1][j]; //right boundary conditions
}
for(i=1;i<=m-1;i++)
{
vo[i][0]=0.0; // top boundary conditions
vo[i][n-1]=0.0; //bottom boundary conditions
}
for(i=0;i<=m-1;i++)
uo[i][0]=-uo[i][1]; //bottom boundary conditions
for(i=1;i<=m-2;i++)
uo[i][n]=2.0-uo[i][n-1]; // top boundary conditions
for(i=1;i<=m-1;i++)
{
po[i][0]=po[i][1];
po[i][n]=po[i][n-1];
}
for(j=1;j<=n-1;j++)
{
po[0][j]=po[1][j];
po[m][j]=po[m][j];
}
}
//f calculations at that point i,j according to u-cell
float f_calc(float uo[131][131],float vo[131][131],float re,int i,int j,int m,int n,float delta_x)
{
float ue,uw,un,vn,vs,us,dudx,dudy,var_find;
ue=(uo[i][j]+uo[i+1][j])/2;
uw=(uo[i][j]+uo[i-1][j])/2;
un=(uo[i][j]+uo[i][j+1])/2;
us=(uo[i][j]+uo[i][j-1])/2;
vn=(vo[i][j]+vo[i+1][j])/2;
vs=(vo[i][j-1]+vo[i+1][j-1])/2;
dudy=(uo[i][j+1]-2*uo[i][j]+uo[i][j-1])/(delta_x*delta_x);
dudx=(uo[i+1][j]-2*uo[i][j]+uo[i-1][j])/(delta_x*delta_x);
var_find=(dudy/re)+(dudx/re)-((ue*ue-uw*uw)/delta_x)-((un*vn-us*vs)/delta_x);
return var_find;
}
//g calculations at that point i,j according to v-cell
float g_calc(float uo[131][131],float vo[131][131],float re,int i,int j,int m,int n,float delta_x)
{
float ue,uw,ve,vw,vs,vn,dvdx,dvdy,var_find;
ue=(uo[i][j]+uo[i][j+1])/2;
uw=(uo[i-1][j]+uo[i-1][j+1])/2;
ve=(vo[i][j]+vo[i+1][j])/2;
vw=(vo[i][j]+vo[i-1][j])/2;
vn=(vo[i][j]+vo[i][j+1])/2;
vs=(vo[i][j]+vo[i][j-1])/2;
dvdx=(vo[i+1][j]-2*vo[i][j]+vo[i-1][j])/(delta_x*delta_x);
dvdy=(vo[i][j+1]-2*vo[i][j]+vo[i][j-1])/(delta_x*delta_x);
var_find=(dvdy/re)+(dvdx/re)-((vn*vn-vs*vs)/delta_x)-((ue*ve-uw*vw)/delta_x);
return var_find;
}
//Pressure calculation using SOR method
float sor(float f[131][131],float g[131][131],float po[131][131],float pn[131][131],float r,float delta_x,float omega,int m,int n)
{
int i,j;
float h,error=0.0,error_sum=0.0,ap,as,an,ae,aw;
for(i=1;i<=m-1;i++)
for(j=1;j<=n-1;j++)
{
if(i==1 && j==1)
{
aw=0.0;
f[0][j]=0.0;
ae=1.0;
as=0.0;
an=r*r;
g[i][0]=0.0;
}
else if(i==m-1 && j==1)
{
ae=0.0;
f[m-1][j]=0.0;
an=r*r;
as=0.0;
aw=1.0;
g[i][0]=0.0;
}
else if(j==n-1 && i==1)
{
as=r*r;
g[i][n-1]=0.0;
ae=1.0;
an=0.0;
aw=0.0;
f[0][j]=0.0;
}
else if(j==n-1 && i==m-1)
{
an=0.0;
g[i][n-1]=0.0;
ae=0.0;
as=r*r;
aw=1.0;
f[m-1][j]=0.0;
}
else if(i==1)
{
ae=1.0;
an=r*r;
as=r*r;
aw=0.0;
f[0][j]=0.0;
}
else if(j==1)
{
aw=1.0;
ae=1.0;
as=0.0;
an=r*r;
g[i][0]=0.0;
}
else if(j==n-1)
{
an=0.0;
g[i][n-1]=0.0;
ae=1.0;
as=r*r;
aw=1.0;
}
else if(i==m-1)
{
ae=0.0;
f[m-1][j]=0.0;
an=r*r;
as=r*r;
aw=1.0;
}
else
{
ae=1.0;
an=r*r;
as=r*r;
aw=1.0;
}
ap=-(an+as+aw+ae);
h=((f[i][j]-f[i-1][j])+(g[i][j]-g[i][j-1]))*delta_x;
pn[i][j]=(omega*(h-aw*pn[i-1][j]-ae*pn[i+1][j]-as*pn[i][j-1]-an*pn[i][j+1])/ap)+(1-omega)*po[i][j];
error=fabs(pn[i][j]-po[i][j]);
error_sum=error+error_sum;
po[i][j]=pn[i][j];
}
error=error_sum/((m-1)*(n-1)); //overall error - similar to mean error
return error;
}
//computation of u and v velocities and returning the maximum error
float vel_calc(float un[131][131],float vn[131][131],float uo[131][131],float vo[131][131],float f[131][131],float g[131][131],float po[131][131],float delta_x,float delta_t,int m,int n)
{
int i,j;
float err_uo,err_un,err_vo,err_vn;
for(i=1;i<=m-2;i++)
for(j=1;j<=n-1;j++)
{
un[i][j]=uo[i][j]+f[i][j]*delta_t-(((po[i+1][j]-po[i][j])*delta_t)/delta_x);
err_uo=fabs(un[i][j]-uo[i][j]);
if(i==1 && j==1)
err_un=err_uo;
if(err_uo>err_un)
err_un=err_uo;
uo[i][j]=un[i][j];
}
for(i=1;i<=m-1;i++)
for(j=1;j<=n-2;j++)
{
vn[i][j]=vo[i][j]+g[i][j]*delta_t-(((po[i][j+1]-po[i][j])*delta_t)/delta_x);
err_vo=fabs(vn[i][j]-vo[i][j]);
if(i==1 && j==1)
err_vn=err_vo;
if(err_vo>err_vn)
err_vn=err_vo;
vo[i][j]=vn[i][j];
}
if(err_un>=err_vn)
return err_un;
else
return err_vn;
}
//to equate the new and old pressures
void pressure_new_old(float po[131][131],float pn[131][131],int m,int n)
{
int i,j;
for(i=1;i<=m-1;i++)
for(j=1;j<=n-1;j++)
po[i][j]=pn[i][j];
}
//calculates the u and v velocities at the specified nodes
void compute_uv(float uo[131][131],float vo[131][131],float po[131][131],int m,int n,float delta_x)
{
int i,j;
FILE* fid1,*fid2,*fid3;
float up[131][131]={0.0},vp[131][131]={0.0};
float delta_xn;
fid1=fopen("streamline.plt","w");
fid2=fopen("pressure.plt","w");
delta_xn=1/(float)(m-2);
for(i=1;i<=m-1;i++)
for(j=1;j<=n-1;j++)
{
up[i][j]=(uo[i][j]+uo[i-1][j])/2.0;
vp[i][j]=(vo[i][j]+vo[i][j-1])/2.0;
}
for(i=1;i<=m-1;i++)
for(j=1;j<=n-1;j++)
{
fprintf(fid1,"%f\t %f\t %f\t %f\n",(i-1)*delta_xn,(j-1)*delta_xn,up[i][j],vp[i][j]);
fprintf(fid2,"%f\t %f\t %f\n",(i-1)*delta_xn,(j-1)*delta_xn,po[i][j]);
}
fclose(fid1);
fclose(fid2);
}
void main()
{
//initialization and declaration of variables
float delta_x,r=1.0,uo[131][131]={0.0},un[131][131]={0.0},vo[131][131]={0.0},vn[131][131]={0.0},po[131][131]={0.0},pn[131][131]={0.0},re=100.0;
int m=128,n=128,iter=0,i,j,iter1=0;
float ae=1.0,an=1.0,aw=1.0,as=1.0,f[131][131]={0.0},g[131][131]={0.0},error_p=1.0,omega=1.5,error_vel=1.0,t,delta_t=1e-3;
delta_x=1/(float)(m-1); //computing parameters
//looping
while(error_vel>1e-8)
{
iter1=0;
vel_bcs(uo,vo,po,m,n); //velocity boundary conditions
for(i=1;i<=m-2;i++)
for(j=1;j<=n-1;j++)
f[i][j]=f_calc(uo,vo,re,i,j,m,n,delta_x); //equating f to all grid points
for(i=1;i<=m-1;i++)
for(j=1;j<=n-2;j++)
g[i][j]=g_calc(uo,vo,re,i,j,m,n,delta_x); //equating g to all grid points
// convergence of pressure equations
while(error_p>1e-8)
{
iter1++;
error_p=sor(f,g,po,pn,r,delta_x,omega,m,n);
}
error_p=1.0;
//computing u and v velocities
error_vel=vel_calc(un,vn,uo,vo,f,g,po,delta_x,delta_t,m,n);
//pressure_new_old(po,pn,m,n);
iter++;
t=iter*delta_t;
printf("%d\t %f\t %d\n",iter,error_vel,iter1);
}
compute_uv(uo,vo,po,m,n,delta_x);
}