Skip to content

Latest commit

 

History

History
114 lines (50 loc) · 5.68 KB

WinPython-3.4.3.3_History.md

File metadata and controls

114 lines (50 loc) · 5.68 KB

History of changes for WinPython 3.4.3.3

The following changes were made to WinPython distribution since version 3.4.3.2.

Python packages

New packages:

  • Babel 1.3 (Internationalization utilities)

  • Flask 0.10.1 (A microframework based on Werkzeug, Jinja2 and good intentions)

  • Theano 0.7.0 (Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs.)

  • Werkzeug 0.10.4 (The Swiss Army knife of Python web development)

  • adodbapi 2.6.0.7 (A pure Python package implementing PEP 249 DB-API using Microsoft ADO.)

  • alabaster 0.7.3 (A configurable sidebar-enabled Sphinx theme)

  • click 4.0 (A simple wrapper around optparse for powerful command line utilities.)

  • docopt 0.6.2 (Pythonic argument parser, that will make you smile)

  • itsdangerous 0.24 (Various helpers to pass trusted data to untrusted environments and back.)

  • jedi 0.8.1 (An autocompletion tool for Python that can be used for text editors)

  • pkginfo 1.2.1 (Query metadatdata from sdists / bdists / installed packages.)

  • pymongo 3.0.1 (Python driver for MongoDB http://www.mongodb.org)

  • pyqtgraph 0.9.10 (Scientific Graphics and GUI Library for Python)

  • redis 2.10.3 (Python client for Redis key-value store)

  • snowballstemmer 1.2.0 (This package provides 16 stemmer algorithms (15 + Poerter English stemmer) generated from Snowball algorithms.)

  • sphinx_rtd_theme 0.1.8 (ReadTheDocs.org theme for Sphinx, 2013 version.)

  • twine 1.5.0 (Collection of utilities for interacting with PyPI)

Upgraded packages:

  • Pillow 2.7.0 → 2.8.1 (Python Imaging Library (fork))

  • PuLP 1.5.6 → 1.5.9 (PuLP is an LP modeler written in python. PuLP can generate MPS or LP files and call GLPK, COIN CLP/CBC, CPLEX, and GUROBI to solve linear problems)

  • SQLAlchemy 0.9.9 → 1.0.4 (SQL Toolkit and Object Relational Mapper)

  • XlsxWriter 0.7.1 → 0.7.2 (A Python module for creating Excel XLSX files.)

  • certifi 14.5.14 → 2015.4.28 (Python package for providing Mozilla's CA Bundle.)

  • h5py 2.4.0 → 2.5.0 (General-purpose Python interface to HDF5 files (unlike PyTables, h5py provides direct access to the full HDF5 C library))

  • husl 4.0.1 → 4.0.2 (Human-friendly HSL (Hue-Saturation-Lightness))

  • ipython 3.0.0 → 3.1.0 (Enhanced Python shell)

  • llvmlite 0.2.2 → 0.4.0 (lightweight wrapper around basic LLVM functionality)

  • lxml 3.4.2 → 3.4.4 (Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API.)

  • nose 1.3.4 → 1.3.6 (nose is a discovery-based unittest extension (e.g. NumPy test module is using nose))

  • numba 0.17.0 → 0.18.2 (compiling Python code using LLVM)

  • numexpr 2.4 → 2.4.3 (Fast evaluation of array expressions elementwise by using a vector-based virtual machine)

  • pandas 0.16.0 → 0.16.1 (Powerful data structures for data analysis, time series and statistics)

  • pg8000 1.10.1 → 1.10.2 (PostgreSQL interface library)

  • pip 6.0.8 → 6.1.1 (A tool for installing and managing Python packages)

  • pycparser 2.10 → 2.12 (C parser in Python)

  • pyodbc 3.0.7 → 3.0.9 (DB API Module for ODBC)

  • python_dateutil 2.4.0 → 2.4.2 (Powerful extensions to the standard datetime module)

  • pyzmq 14.5.0 → 14.6.0 (Lightweight and super-fast messaging based on ZeroMQ library (required for IPython Qt console))

  • requests 2.6.0 → 2.7.0 (Requests is an Apache2 Licensed HTTP library, written in Python, for human beings.)

  • scikit_image 0.11.2 → 0.11.3 (Image processing toolbox for SciPy)

  • scikit_learn 0.16.0 → 0.16.1 (A set of Python modules for machine learning and data mining)

  • setuptools 14.3.1 → 15.2 (Download, build, install, upgrade, and uninstall Python packages - easily)

  • sqlite_bro 0.8.7.4 → 0.8.8 (a graphic SQLite Client in 1 Python file)

  • sqlparse 0.1.14 → 0.1.15 (Non-validating SQL parser)

  • tables 3.1.1 → 3.2.0 (Package based on HDF5 library for managing hierarchical datasets (extremely large amounts of data))