-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathread_sizing_inputs.py
103 lines (74 loc) · 2.53 KB
/
read_sizing_inputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
## @ingroup Sizing
#read_sizing_inputs.py
# Created : Jun 2016, M. Vegh
# Modified: May 2018, M. Vegh
# ----------------------------------------------------------------------
# Imports
# ---------------
import numpy as np
# ----------------------------------------------------------------------
# read_sizing_inputs
# ----------------------------------------------------------------------
## @ingroup Sizing
def read_sizing_inputs(sizing_loop, opt_inputs):
"""
This function reads a sizing loop outputs file and returns an array
of design variables, an array of sizing variables, and an output
flag to indicate whether the file was successfully read.
Inputs:
sizing_loop.
output_filename
opt_inputs
Outputs:
data_inputs
data_outputs
read_success
"""
try:
file_in = open(sizing_loop.output_filename)
read_success = 1
except IOError:
print('no data to read, use default values')
read_success = 0
#read data from previous iterations
if read_success==1:
data=file_in.readlines()
file_in.close()
data=format_input_data(data) #format data so we can work with it
file_in.close()
if len(data)>0:
data_inputs = data[:, 0:len(opt_inputs)] #values from optimization problem
data_outputs= data[:,len(opt_inputs):len(opt_inputs)+len(sizing_loop.default_y)] #variables we iterate on in sizing loop
else:
print('empty sizing variable file, use default inputs')
data_inputs = 0
data_outputs = 0
read_success = 0
else:
data_inputs = 0
data_outputs = 0
return data_inputs, data_outputs, read_success
## @ingroup Sizing
def format_input_data(data):
"""
Properly formats an input data structure so it can be read as an array
of floats
Inputs:
data
Outputs:
data_out
"""
data_out=[]
for line in data:
line=line.replace('[','')
line=line.replace(']','')
line=line.replace(',',' ')
line=line.replace(' ',' ')
numbers = line.split(' ')
numbers_out=[]
for number in numbers:
if number != ' ' or number != '\t':
numbers_out.append(float(number))
data_out.append(numbers_out)
data_out=np.array(data_out) #change into numpy array to work with later
return data_out