-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetectCSpatterns.py
213 lines (181 loc) · 9.55 KB
/
detectCSpatterns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import tulipy as ti
import numpy as np
import pandas as pd
import psycopg2
import datetime
def get_filtered_patterns():
# Database connection
try:
conn = psycopg2.connect(
dbname="stockdata",
user="postgres",
password="Subhan$007",
host="localhost",
port="5432"
)
cur = conn.cursor()
cur.execute("SELECT date, symbol, open, high, low, close FROM daily_prices WHERE date >= NOW() - INTERVAL '10 days' ORDER BY date")
rows = cur.fetchall()
except Exception as e:
print(f"Error connecting to the database: {e}")
return None
# finally:
# if conn:
# conn.close()
# Convert fetched data to DataFrame
data = {
'Date': [row[0] for row in rows],
'Symbol': [row[1] for row in rows],
'Open': [round(row[2], 2) for row in rows],
'High': [round(row[3], 2) for row in rows],
'Low': [round(row[4], 2) for row in rows],
'Close': [round(row[5], 2) for row in rows],
}
df = pd.DataFrame(data)
df.set_index('Date', inplace=True)
df.index = pd.to_datetime(df.index) # Ensure the index is a DatetimeIndex
open_prices = df['Open'].values
high_prices = df['High'].values
low_prices = df['Low'].values
close_prices = df['Close'].values
# Define a function to detect patterns
def detect_patterns(open_prices, high_prices, low_prices, close_prices):
# Initialize arrays to hold pattern detections
morning_star = np.zeros(len(open_prices), dtype=bool)
three_white_soldiers = np.zeros(len(open_prices), dtype=bool)
bullish_harami = np.zeros(len(open_prices), dtype=bool)
rising_three_methods = np.zeros(len(open_prices), dtype=bool)
three_inside_up = np.zeros(len(open_prices), dtype=bool)
inverted_hammer = np.zeros(len(open_prices), dtype=bool)
tasuki_gap = np.zeros(len(open_prices), dtype=bool)
mat_hold = np.zeros(len(open_prices), dtype=bool)
upside_tasuki_gap = np.zeros(len(open_prices), dtype=bool)
three_line_strike = np.zeros(len(open_prices), dtype=bool)
# Define helper functions
def is_small_body(open_price, high_price, low_price, close_price):
body_size = abs(close_price - open_price)
total_range = high_price - low_price
return body_size < (total_range * 0.2)
def is_long(open_price, high_price, low_price, close_price, threshold=0.05):
return (high_price - low_price) > (high_price * threshold)
def is_bullish(open_price, close_price):
return close_price > open_price
def is_bearish(open_price, close_price):
return open_price > close_price
def has_gap(open_price, prev_close_price, threshold=0.05):
return abs(open_price - prev_close_price) > (open_price * threshold)
def has_long_upper_shadow(open_price, high_price, close_price):
upper_shadow = high_price - max(open_price, close_price)
body_size = abs(close_price - open_price)
return upper_shadow > (body_size * 5)
def has_small_lower_shadow(open_price, low_price, close_price):
lower_shadow = min(open_price, close_price) - low_price
body_size = abs(close_price - open_price)
return lower_shadow < (body_size * 0.1)
# Iterate over the data to detect patterns
for i in range(2, len(open_prices) - 2):
# Morning Star
if (is_bearish(open_prices[i-2], close_prices[i-2]) and
is_small_body(open_prices[i-1], high_prices[i-1], low_prices[i-1], close_prices[i-1]) and
is_bullish(open_prices[i], close_prices[i]) and
close_prices[i] > (open_prices[i-2] + (close_prices[i-2] - open_prices[i-2]) / 2)):
morning_star[i] = True
# Three White Soldiers
if (is_bullish(open_prices[i-2], close_prices[i-2]) and
is_bullish(open_prices[i-1], close_prices[i-1]) and
is_bullish(open_prices[i], close_prices[i]) and
close_prices[i-2] < close_prices[i-1] and
close_prices[i-1] < close_prices[i]):
three_white_soldiers[i] = True
# Bullish Harami
if (is_bearish(open_prices[i-2], close_prices[i-2]) and
is_small_body(open_prices[i-1], high_prices[i-1], low_prices[i-1], close_prices[i-1]) and
is_bullish(open_prices[i], close_prices[i]) and
close_prices[i] > (open_prices[i-2] + (close_prices[i-2] - open_prices[i-2]) / 2) and
close_prices[i-1] > open_prices[i-2] and close_prices[i-1] < close_prices[i-2]):
bullish_harami[i] = True
# Rising Three Methods
if (is_bearish(open_prices[i-2], close_prices[i-2]) and
is_small_body(open_prices[i-1], high_prices[i-1], low_prices[i-1], close_prices[i-1]) and
is_bearish(open_prices[i], close_prices[i]) and
open_prices[i] > close_prices[i-1] and
close_prices[i] > open_prices[i-2]):
rising_three_methods[i] = True
# Three Inside Up
if (is_bullish(open_prices[i-2], close_prices[i-2]) and
is_bearish(open_prices[i-1], close_prices[i-1]) and
is_bullish(open_prices[i], close_prices[i]) and
open_prices[i-1] > close_prices[i-2] and
close_prices[i] > open_prices[i-2]):
three_inside_up[i] = True
# Inverted Hammer
if (is_bearish(open_prices[i-2], close_prices[i-2]) and
is_small_body(open_prices[i], high_prices[i], low_prices[i], close_prices[i]) and
has_long_upper_shadow(open_prices[i], high_prices[i], close_prices[i]) and
has_small_lower_shadow(open_prices[i], low_prices[i], close_prices[i]) and
is_bullish(open_prices[i], close_prices[i]) and
close_prices[i] > (open_prices[i-2] + (close_prices[i-2] - open_prices[i-2]) / 2)):
inverted_hammer[i] = True
# Tasuki Gap
if (has_gap(open_prices[i-2], close_prices[i-3]) and
has_gap(open_prices[i-1], close_prices[i-2]) and
has_gap(open_prices[i], close_prices[i-1])):
tasuki_gap[i] = True
# Mat Hold
if (is_long(open_prices[i-2], high_prices[i-2], low_prices[i-2], close_prices[i-2]) and
is_small_body(open_prices[i-1], high_prices[i-1], low_prices[i-1], close_prices[i-1]) and
has_gap(open_prices[i-1], close_prices[i-2]) and
is_long(open_prices[i], high_prices[i], low_prices[i], close_prices[i]) and
open_prices[i] < close_prices[i-1] and close_prices[i] > open_prices[i-2]):
mat_hold[i] = True
# Upside Tasuki Gap
if (is_bearish(open_prices[i-2], close_prices[i-2]) and
has_gap(open_prices[i-1], close_prices[i-2]) and
is_bullish(open_prices[i], close_prices[i]) and
open_prices[i] > close_prices[i-1] and close_prices[i] > open_prices[i-2]):
upside_tasuki_gap[i] = True
# Three-Line Strike
if (abs(open_prices[i-2] - close_prices[i-2]) < 0.01 * (high_prices[i-2] - low_prices[i-2]) and
abs(open_prices[i-1] - close_prices[i-1]) < 0.01 * (high_prices[i-1] - low_prices[i-1]) and
abs(open_prices[i] - close_prices[i]) < 0.01 * (high_prices[i] - low_prices[i])):
three_line_strike[i] = True
# Return a DataFrame with pattern detections
# patterns = pd.DataFrame({
# 'Date': df.index.strftime('%Y-%m-%d'),
# 'Symbol': df['Symbol'],
# 'MorningStar': morning_star,
# 'ThreeWhiteSoldiers': three_white_soldiers,
# 'BullishHarami': bullish_harami,
# 'RisingThreeMethods': rising_three_methods,
# 'ThreeInsideUp': three_inside_up,
# 'InvertedHammer': inverted_hammer,
# 'TasukiGap': tasuki_gap,
# 'MatHold': mat_hold,
# 'UpsideTasukiGap': upside_tasuki_gap,
# 'ThreeLineStrike': three_line_strike
# })
# When creating the patterns DataFrame, use the index directly
patterns = pd.DataFrame({
'Symbol': df['Symbol'],
'MorningStar': morning_star,
'ThreeWhiteSoldiers': three_white_soldiers,
'BullishHarami': bullish_harami,
'RisingThreeMethods': rising_three_methods,
'ThreeInsideUp': three_inside_up,
'InvertedHammer': inverted_hammer,
'TasukiGap': tasuki_gap,
'MatHold': mat_hold,
'UpsideTasukiGap': upside_tasuki_gap,
'ThreeLineStrike': three_line_strike
}, index=df.index)
return patterns
patterns = detect_patterns(open_prices, high_prices, low_prices, close_prices)
filtered_patterns = patterns[patterns.iloc[:, 2:].any(axis=1)]
return filtered_patterns
if __name__ == "__main__":
# This block will only run if the script is executed directly
result = get_filtered_patterns()
print(result)
else:
# This allows other scripts to import and use get_filtered_patterns
pass