forked from meta-llama/llama-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_utils.py
56 lines (44 loc) · 1.8 KB
/
dataset_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import torch
from llama_recipes.data.concatenator import ConcatDataset
from llama_recipes.datasets import DATASET_PREPROC, DATALOADER_COLLATE_FUNC
from llama_recipes.utils.config_utils import get_dataloader_kwargs
def get_preprocessed_dataset(
tokenizer, dataset_config, split: str = "train"
) -> torch.utils.data.Dataset:
if not dataset_config.dataset in DATASET_PREPROC:
raise NotImplementedError(f"{dataset_config.dataset} is not (yet) implemented")
def get_split():
return (
dataset_config.train_split
if split == "train"
else dataset_config.test_split
)
return DATASET_PREPROC[dataset_config.dataset](
dataset_config,
tokenizer,
get_split(),
)
def get_custom_data_collator(
dataset_processer, dataset_config
) -> torch.utils.data.Dataset:
if not dataset_config.dataset in DATALOADER_COLLATE_FUNC:
return None
return DATALOADER_COLLATE_FUNC[dataset_config.dataset](
dataset_processer,
dataset_config
)
def get_dataloader(tokenizer, dataset_config, train_config, split: str = "train"):
dataset = get_preprocessed_dataset(tokenizer, dataset_config, split)
dl_kwargs = get_dataloader_kwargs(train_config, dataset, tokenizer, split)
if split == "train" and train_config.batching_strategy == "packing":
dataset = ConcatDataset(dataset, chunk_size=train_config.context_length)
# Create data loader
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=train_config.num_workers_dataloader,
pin_memory=True,
**dl_kwargs,
)
return dataloader