forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBatchLinearAlgebraKernel.cpp
1227 lines (1083 loc) · 48.4 KB
/
BatchLinearAlgebraKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Config.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/native/BatchLinearAlgebra.h>
#include <ATen/native/LinearAlgebraUtils.h>
#include <ATen/native/cpu/zmath.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_strided.h>
#endif
namespace at { namespace native {
namespace {
/*
Computes the Cholesky decomposition of matrices stored in `input`.
This is an in-place routine and the content of 'input' is overwritten with the result.
Args:
* `input` - [in] Input tensor for the Cholesky decomposition
[out] Cholesky decomposition result
* `info` - [out] Tensor filled with LAPACK error codes,
positive values indicate that the matrix is not positive definite.
* `upper` - controls whether the upper (true) or lower (false) triangular portion of `input` is used
For further details, please see the LAPACK documentation for POTRF.
*/
template <typename scalar_t>
void apply_cholesky(const Tensor& input, const Tensor& info, bool upper) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(
false,
"Calling torch.linalg.cholesky on a CPU tensor requires compiling ",
"PyTorch with LAPACK. Please use PyTorch built with LAPACK support.");
#else
char uplo = upper ? 'U' : 'L';
auto input_data = input.data_ptr<scalar_t>();
auto info_data = info.data_ptr<int>();
auto input_matrix_stride = matrixStride(input);
auto batch_size = batchCount(input);
auto n = input.size(-2);
auto lda = std::max<int64_t>(1, n);
for (const auto i : c10::irange(batch_size)) {
scalar_t* input_working_ptr = &input_data[i * input_matrix_stride];
int* info_working_ptr = &info_data[i];
lapackCholesky<scalar_t>(uplo, n, input_working_ptr, lda, info_working_ptr);
}
#endif
}
// This is a type dispatching helper function for 'apply_cholesky'
void cholesky_kernel(const Tensor& input, const Tensor& infos, bool upper) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(input.scalar_type(), "cholesky_cpu", [&]{
apply_cholesky<scalar_t>(input, infos, upper);
});
}
/*
Copies the lower (or upper) triangle of the square matrix to the other half and conjugates it.
This operation is performed in-place.
*/
template <typename scalar_t>
void apply_reflect_conj_tri_single(scalar_t* self, int64_t n, int64_t stride, bool upper) {
std::function<void(int64_t, int64_t)> loop = [](int64_t, int64_t){};
if (upper) {
loop = [&](int64_t start, int64_t end) {
for (const auto i : c10::irange(start, end)) {
for (int64_t j = i + 1; j < n; j++) {
self[i * stride + j] = conj_impl(self[j * stride + i]);
}
}
};
} else {
loop = [&](int64_t start, int64_t end) {
for (const auto i : c10::irange(start, end)) {
for (const auto j : c10::irange(i)) {
self[i * stride + j] = conj_impl(self[j * stride + i]);
}
}
};
}
// For small matrices OpenMP overhead is too large
if (n < 256) {
loop(0, n);
} else {
at::parallel_for(0, n, 0, loop);
}
}
/*
Computes the inverse of a symmetric (Hermitian) positive-definite matrix n-by-n matrix 'input' using the Cholesky factorization
This is an in-place routine, content of 'input' is overwritten.
'infos' is an int Tensor containing error codes for each matrix in the batched input.
For more information see LAPACK's documentation for POTRI routine.
*/
template <typename scalar_t>
void apply_cholesky_inverse(Tensor& input, Tensor& infos, bool upper) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(false, "cholesky_inverse: LAPACK library not found in compilation");
#else
char uplo = upper ? 'U' : 'L';
auto input_data = input.data_ptr<scalar_t>();
auto infos_data = infos.data_ptr<int>();
auto input_matrix_stride = matrixStride(input);
auto batch_size = batchCount(input);
auto n = input.size(-2);
auto lda = std::max<int64_t>(1, n);
for (const auto i : c10::irange(batch_size)) {
scalar_t* input_working_ptr = &input_data[i * input_matrix_stride];
int* info_working_ptr = &infos_data[i];
lapackCholeskyInverse<scalar_t>(uplo, n, input_working_ptr, lda, info_working_ptr);
// LAPACK writes to only upper/lower part of the matrix leaving the other side unchanged
apply_reflect_conj_tri_single<scalar_t>(input_working_ptr, n, lda, upper);
}
#endif
}
// This is a type dispatching helper function for 'apply_cholesky_inverse'
Tensor& cholesky_inverse_kernel_impl(Tensor& result, Tensor& infos, bool upper) {
// This function calculates the inverse matrix in-place
// result should be in column major order and contain matrices to invert
// the content of result is overwritten by 'apply_cholesky_inverse'
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(result.scalar_type(), "cholesky_inverse_out_cpu", [&]{
apply_cholesky_inverse<scalar_t>(result, infos, upper);
});
return result;
}
/*
Computes the eigenvalues and eigenvectors of n-by-n matrix 'input'.
This is an in-place routine, content of 'input', 'values', 'vectors' is overwritten.
'infos' is an int Tensor containing error codes for each matrix in the batched input.
For more information see LAPACK's documentation for GEEV routine.
*/
template <typename scalar_t>
void apply_linalg_eig(Tensor& values, Tensor& vectors, Tensor& input, Tensor& infos, bool compute_eigenvectors) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(false, "Calling torch.linalg.eig on a CPU tensor requires compiling ",
"PyTorch with LAPACK. Please use PyTorch built with LAPACK support.");
#else
using value_t = typename c10::scalar_value_type<scalar_t>::type;
char jobvr = compute_eigenvectors ? 'V' : 'N';
char jobvl = 'N'; // only right eigenvectors are computed
auto n = input.size(-1);
auto lda = std::max<int64_t>(1, n);
auto batch_size = batchCount(input);
auto input_matrix_stride = matrixStride(input);
auto values_stride = values.size(-1);
auto input_data = input.data_ptr<scalar_t>();
auto values_data = values.data_ptr<scalar_t>();
auto infos_data = infos.data_ptr<int>();
auto rvectors_data = compute_eigenvectors ? vectors.data_ptr<scalar_t>() : nullptr;
scalar_t* lvectors_data = nullptr; // only right eigenvectors are computed
int64_t ldvr = compute_eigenvectors ? lda : 1;
int64_t ldvl = 1;
Tensor rwork;
value_t* rwork_data = nullptr;
if (input.is_complex()) {
ScalarType real_dtype = toRealValueType(input.scalar_type());
rwork = at::empty({lda * 2}, input.options().dtype(real_dtype));
rwork_data = rwork.mutable_data_ptr<value_t>();
}
// call lapackEig once to get the optimal size for work data
scalar_t work_query;
lapackEig<scalar_t, value_t>(jobvl, jobvr, n, input_data, lda, values_data,
lvectors_data, ldvl, rvectors_data, ldvr, &work_query, -1, rwork_data, &infos_data[0]);
int lwork = std::max<int>(1, static_cast<int>(real_impl<scalar_t, value_t>(work_query)));
Tensor work = at::empty({lwork}, input.dtype());
auto work_data = work.mutable_data_ptr<scalar_t>();
for (const auto i : c10::irange(batch_size)) {
scalar_t* input_working_ptr = &input_data[i * input_matrix_stride];
scalar_t* values_working_ptr = &values_data[i * values_stride];
scalar_t* rvectors_working_ptr = compute_eigenvectors ? &rvectors_data[i * input_matrix_stride] : nullptr;
int* info_working_ptr = &infos_data[i];
lapackEig<scalar_t, value_t>(jobvl, jobvr, n, input_working_ptr, lda, values_working_ptr,
lvectors_data, ldvl, rvectors_working_ptr, ldvr, work_data, lwork, rwork_data, info_working_ptr);
}
#endif
}
// This is a type dispatching helper function for 'apply_linalg_eig'
void linalg_eig_kernel(Tensor& eigenvalues, Tensor& eigenvectors, Tensor& infos, const Tensor& input, bool compute_eigenvectors) {
// This function calculates the non-symmetric eigendecomposition in-place
// tensors should be in batched column major memory format
// the content of eigenvalues, eigenvectors and infos is overwritten by 'apply_linalg_eig'
// apply_linalg_eig modifies in-place provided input matrix, therefore we need a copy
Tensor input_working_copy = at::empty(input.mT().sizes(), input.options());
input_working_copy.transpose_(-2, -1); // make input_working_copy to have Fortran contiguous memory layout
input_working_copy.copy_(input);
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(input.scalar_type(), "linalg_eig_out_cpu", [&]{
apply_linalg_eig<scalar_t>(eigenvalues, eigenvectors, input_working_copy, infos, compute_eigenvectors);
});
}
/*
Computes eigenvalues and eigenvectors of the input that is stored initially in 'vectors'.
The computation is done in-place: 'vectors' stores the input and will be overwritten,
'values' should be an allocated empty array.
'infos' is used to store information for possible checks for error.
'upper' controls the portion of input matrix to consider in computations
'compute_eigenvectors' controls whether eigenvectors should be computed.
This function doesn't do any error checks and it's assumed that every argument is valid.
*/
template <typename scalar_t>
void apply_lapack_eigh(const Tensor& values, const Tensor& vectors, const Tensor& infos, bool upper, bool compute_eigenvectors) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(
false,
"Calling torch.linalg.eigh or eigvalsh on a CPU tensor requires compiling ",
"PyTorch with LAPACK. Please use PyTorch built with LAPACK support.");
#else
using value_t = typename c10::scalar_value_type<scalar_t>::type;
char uplo = upper ? 'U' : 'L';
char jobz = compute_eigenvectors ? 'V' : 'N';
auto n = vectors.size(-1);
auto lda = std::max<int64_t>(1, n);
auto batch_size = batchCount(vectors);
auto vectors_stride = matrixStride(vectors);
auto values_stride = values.size(-1);
auto vectors_data = vectors.data_ptr<scalar_t>();
auto values_data = values.data_ptr<value_t>();
auto infos_data = infos.data_ptr<int>();
// Using 'int' instead of int32_t or int64_t is consistent with the current LAPACK interface
// It really should be changed in the future to something like lapack_int that depends on the specific LAPACK library that is linked
// or switch to supporting only 64-bit indexing by default.
int lwork = -1;
int lrwork = -1;
int liwork = -1;
scalar_t lwork_query;
value_t rwork_query;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int iwork_query;
// call lapackSyevd once to get the optimal size for work data
lapackSyevd<scalar_t, value_t>(jobz, uplo, n, vectors_data, lda, values_data,
&lwork_query, lwork, &rwork_query, lrwork, &iwork_query, liwork, infos_data);
lwork = std::max<int>(1, real_impl<scalar_t, value_t>(lwork_query));
Tensor work = at::empty({lwork}, vectors.options());
auto work_data = work.mutable_data_ptr<scalar_t>();
liwork = std::max<int>(1, iwork_query);
Tensor iwork = at::empty({liwork}, vectors.options().dtype(at::kInt));
auto iwork_data = iwork.mutable_data_ptr<int>();
Tensor rwork;
value_t* rwork_data = nullptr;
if (vectors.is_complex()) {
lrwork = std::max<int>(1, rwork_query);
rwork = at::empty({lrwork}, values.options());
rwork_data = rwork.mutable_data_ptr<value_t>();
}
// Now call lapackSyevd for each matrix in the batched input
for (const auto i : c10::irange(batch_size)) {
scalar_t* vectors_working_ptr = &vectors_data[i * vectors_stride];
value_t* values_working_ptr = &values_data[i * values_stride];
int* info_working_ptr = &infos_data[i];
lapackSyevd<scalar_t, value_t>(jobz, uplo, n, vectors_working_ptr, lda, values_working_ptr,
work_data, lwork, rwork_data, lrwork, iwork_data, liwork, info_working_ptr);
// The current behaviour for Linear Algebra functions to raise an error if something goes wrong
// or input doesn't satisfy some requirement
// therefore return early since further computations will be wasted anyway
if (*info_working_ptr != 0) {
return;
}
}
#endif
}
// This is a type dispatching helper function for 'apply_lapack_eigh'
void linalg_eigh_kernel(const Tensor& eigenvalues, const Tensor& eigenvectors, const Tensor& infos, bool upper, bool compute_eigenvectors) {
// This function calculates the symmetric/hermitian eigendecomposition
// in-place tensors should be in batched column major memory format the
// content of eigenvalues, eigenvectors and infos is overwritten by
// 'apply_lapack_eigh'
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(
eigenvectors.scalar_type(), "linalg_eigh_cpu", [&] {
apply_lapack_eigh<scalar_t>(
eigenvalues, eigenvectors, infos, upper, compute_eigenvectors);
});
}
/*
The geqrf function computes the QR decomposition of matrices stored in `input`.
However, rather than producing a Q matrix directly, it produces a sequence of
elementary reflectors which may later be composed to construct Q - for example
with the orgqr or ormqr functions.
Args:
* `input` - [in] Input tensor for QR decomposition
[out] QR decomposition result which contains:
i) The elements of R, on and above the diagonal.
ii) Directions of the reflectors implicitly defining Q.
Tensor with the directions of the elementary reflectors below the diagonal,
it will be overwritten with the result
* `tau` - [out] Tensor which will contain the magnitudes of the reflectors
implicitly defining Q.
For further details, please see the LAPACK documentation for GEQRF.
*/
template <typename scalar_t>
static void apply_geqrf(const Tensor& input, const Tensor& tau) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(
false,
"Calling torch.geqrf on a CPU tensor requires compiling ",
"PyTorch with LAPACK. Please use PyTorch built with LAPACK support.");
#else
using value_t = typename c10::scalar_value_type<scalar_t>::type;
auto input_data = input.data_ptr<scalar_t>();
auto tau_data = tau.data_ptr<scalar_t>();
auto input_matrix_stride = matrixStride(input);
auto tau_stride = tau.size(-1);
auto batch_size = batchCount(input);
auto m = input.size(-2);
auto n = input.size(-1);
auto lda = std::max<int>(1, m);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int info;
// Run once, first to get the optimum work size.
// Since we deal with batches of matrices with the same dimensions, doing this outside
// the loop saves (batch_size - 1) workspace queries which would provide the same result
// and (batch_size - 1) calls to allocate and deallocate workspace using at::empty()
int lwork = -1;
scalar_t wkopt;
lapackGeqrf<scalar_t>(m, n, input_data, lda, tau_data, &wkopt, lwork, &info);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(info == 0);
// if lwork is less than 'n' then a warning is printed:
// Intel MKL ERROR: Parameter 7 was incorrect on entry to SGEQRF.
lwork = std::max<int>(std::max<int>(1, n), real_impl<scalar_t, value_t>(wkopt));
Tensor work = at::empty({lwork}, input.options());
for (const auto i : c10::irange(batch_size)) {
scalar_t* input_working_ptr = &input_data[i * input_matrix_stride];
scalar_t* tau_working_ptr = &tau_data[i * tau_stride];
// now compute the actual QR and tau
lapackGeqrf<scalar_t>(m, n, input_working_ptr, lda, tau_working_ptr, work.data_ptr<scalar_t>(), lwork, &info);
// info from lapackGeqrf only reports if the i-th parameter is wrong
// so we don't need to check it all the time
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(info == 0);
}
#endif
}
// This is a type dispatching helper function for 'apply_geqrf'
void geqrf_kernel(const Tensor& input, const Tensor& tau) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(input.scalar_type(), "geqrf_cpu", [&]{
apply_geqrf<scalar_t>(input, tau);
});
}
/*
The orgqr function allows reconstruction of an orthogonal (or unitary) matrix Q,
from a sequence of elementary reflectors, such as produced by the geqrf function.
Args:
* `self` - Tensor with the directions of the elementary reflectors below the diagonal,
it will be overwritten with the result
* `tau` - Tensor containing the magnitudes of the elementary reflectors
For further details, please see the LAPACK documentation for ORGQR and UNGQR.
*/
template <typename scalar_t>
inline void apply_orgqr(Tensor& self, const Tensor& tau) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(false, "Calling torch.orgqr on a CPU tensor requires compiling ",
"PyTorch with LAPACK. Please use PyTorch built with LAPACK support.");
#else
// Some LAPACK implementations might not work well with empty matrices:
// workspace query might return lwork as 0, which is not allowed (requirement is lwork >= 1)
// We don't need to do any calculations in this case, so let's return early
if (self.numel() == 0) {
return;
}
using value_t = typename c10::scalar_value_type<scalar_t>::type;
auto self_data = self.data_ptr<scalar_t>();
auto tau_data = tau.data_ptr<scalar_t>();
auto self_matrix_stride = matrixStride(self);
auto tau_stride = tau.size(-1);
auto batch_size = batchCount(self);
auto m = self.size(-2);
auto n = self.size(-1);
auto k = tau.size(-1);
auto lda = std::max<int64_t>(1, m);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int info;
// LAPACK's requirement
TORCH_INTERNAL_ASSERT(m >= n);
TORCH_INTERNAL_ASSERT(n >= k);
// Run once, first to get the optimum work size.
// Since we deal with batches of matrices with the same dimensions, doing this outside
// the loop saves (batch_size - 1) workspace queries which would provide the same result
// and (batch_size - 1) calls to allocate and deallocate workspace using at::empty()
int lwork = -1;
scalar_t wkopt;
lapackOrgqr<scalar_t>(m, n, k, self_data, lda, tau_data, &wkopt, lwork, &info);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(info == 0);
lwork = std::max<int>(1, real_impl<scalar_t, value_t>(wkopt));
Tensor work = at::empty({lwork}, self.options());
for (const auto i : c10::irange(batch_size)) {
scalar_t* self_working_ptr = &self_data[i * self_matrix_stride];
scalar_t* tau_working_ptr = &tau_data[i * tau_stride];
// now compute the actual Q
lapackOrgqr<scalar_t>(m, n, k, self_working_ptr, lda, tau_working_ptr, work.data_ptr<scalar_t>(), lwork, &info);
// info from lapackOrgqr only reports if the i-th parameter is wrong
// so we don't need to check it all the time
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(info == 0);
}
#endif
}
// This is a type dispatching helper function for 'apply_orgqr'
Tensor& orgqr_kernel_impl(Tensor& result, const Tensor& tau) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(result.scalar_type(), "orgqr_cpu", [&]{
apply_orgqr<scalar_t>(result, tau);
});
return result;
}
/*
Solves a least squares problem. That is minimizing ||B - A X||.
Input args:
* 'input' - Tensor containing batches of m-by-n matrix A.
* 'other' - Tensor containing batches of max(m, n)-by-nrhs matrix B.
* 'cond' - relative tolerance for determining rank of A.
* 'driver' - the name of the LAPACK driver that is used to compute the solution.
Output args (modified in-place):
* 'solution' - Tensor to store the solution matrix X.
* 'residuals' - Tensor to store values of ||B - A X||.
* 'rank' - Tensor to store the rank of A.
* 'singular_values' - Tensor to store the singular values of A.
* 'infos' - Tensor to store error codes of linear algebra math library.
For further details, please see the LAPACK documentation for GELS/GELSY/GELSS/GELSD routines.
*/
template <typename scalar_t>
void apply_lstsq(const Tensor& A, Tensor& B, Tensor& rank, Tensor& singular_values, Tensor& infos, double rcond, LapackLstsqDriverType driver_type) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(
false,
"Calling torch.linalg.lstsq on a CPU tensor requires compiling ",
"PyTorch with LAPACK. Please use PyTorch built with LAPACK support.");
#else
using value_t = typename c10::scalar_value_type<scalar_t>::type;
using driver_t = at::native::LapackLstsqDriverType;
auto lapack_func = lapackLstsq<driver_t::Gelsd, scalar_t, value_t>;
static auto driver_type_to_func
= std::unordered_map<driver_t, decltype(lapack_func)>({
{driver_t::Gels, lapackLstsq<driver_t::Gels, scalar_t, value_t>},
{driver_t::Gelsy, lapackLstsq<driver_t::Gelsy, scalar_t, value_t>},
{driver_t::Gelsd, lapackLstsq<driver_t::Gelsd, scalar_t, value_t>},
{driver_t::Gelss, lapackLstsq<driver_t::Gelss, scalar_t, value_t>}
});
lapack_func = driver_type_to_func[driver_type];
char trans = 'N';
auto A_data = A.data_ptr<scalar_t>();
auto B_data = B.data_ptr<scalar_t>();
auto m = A.size(-2);
auto n = A.size(-1);
auto nrhs = B.size(-1);
auto lda = std::max<int64_t>(1, m);
auto ldb = std::max<int64_t>(1, std::max(m, n));
auto infos_data = infos.data_ptr<int>();
// only 'gels' driver does not compute the rank
int rank_32;
int64_t* rank_data;
int64_t* rank_working_ptr = nullptr;
if (driver_t::Gels != driver_type) {
rank_data = rank.data_ptr<int64_t>();
rank_working_ptr = rank_data;
}
// 'gelsd' and 'gelss' are SVD-based algorithms
// so we can get singular values
value_t* s_data;
value_t* s_working_ptr = nullptr;
int64_t s_stride;
if (driver_t::Gelsd == driver_type || driver_t::Gelss == driver_type) {
s_data = singular_values.data_ptr<value_t>();
s_working_ptr = s_data;
s_stride = singular_values.size(-1);
}
// 'jpvt' workspace array is used only for 'gelsy' which uses QR factorization with column pivoting
Tensor jpvt;
int* jpvt_data = nullptr;
if (driver_t::Gelsy == driver_type) {
jpvt = at::empty({std::max<int64_t>(1, n)}, A.options().dtype(at::kInt));
jpvt_data = jpvt.mutable_data_ptr<int>();
}
// Run once the driver, first to get the optimal workspace size
int lwork = -1; // default value to decide the opt size for workspace arrays
scalar_t work_opt;
value_t rwork_opt;
int iwork_opt;
lapack_func(trans, m, n, nrhs,
A_data, lda,
B_data, ldb,
&work_opt, lwork,
infos_data,
jpvt_data,
static_cast<value_t>(rcond),
&rank_32,
&rwork_opt,
s_working_ptr,
&iwork_opt);
lwork = std::max<int>(1, real_impl<scalar_t, value_t>(work_opt));
Tensor work = at::empty({lwork}, A.options());
scalar_t* work_data = work.mutable_data_ptr<scalar_t>();
// 'rwork' only used for complex inputs and 'gelsy', 'gelsd' and 'gelss' drivers
Tensor rwork;
value_t* rwork_data;
if (A.is_complex() && driver_t::Gels != driver_type) {
int64_t rwork_len;
switch (driver_type) {
case driver_t::Gelsy:
rwork_len = std::max<int64_t>(1, 2 * n);
break;
case driver_t::Gelss:
rwork_len = std::max<int64_t>(1, 5 * std::min(m, n));
break;
// case driver_t::Gelsd:
default:
rwork_len = std::max<int64_t>(1, rwork_opt);
}
rwork = at::empty({rwork_len}, A.options().dtype(c10::toRealValueType(A.scalar_type())));
rwork_data = rwork.mutable_data_ptr<value_t>();
}
// 'iwork' workspace array is relevant only for 'gelsd'
Tensor iwork;
int* iwork_data;
if (driver_t::Gelsd == driver_type) {
iwork = at::empty({std::max<int>(1, iwork_opt)}, A.options().dtype(at::kInt));
iwork_data = iwork.mutable_data_ptr<int>();
}
at::native::batch_iterator_with_broadcasting<scalar_t>(A, B,
[&](scalar_t* A_working_ptr, scalar_t* B_working_ptr, int64_t A_linear_batch_idx) {
rank_working_ptr = rank_working_ptr ? &rank_data[A_linear_batch_idx] : nullptr;
s_working_ptr = s_working_ptr ? &s_data[A_linear_batch_idx * s_stride] : nullptr;
int* infos_working_ptr = &infos_data[A_linear_batch_idx];
lapack_func(trans, m, n, nrhs,
A_working_ptr, lda,
B_working_ptr, ldb,
work_data, lwork,
infos_working_ptr,
jpvt_data,
static_cast<value_t>(rcond),
&rank_32,
rwork_data,
s_working_ptr,
iwork_data);
// we want the output `rank` Tensor to be of type int64_t,
// however LAPACK accepts int. That is why we use an integer
// variable that then gets promoted and written into `rank`.
// We use this approach over a tensor cast for better performance.
if (rank_working_ptr) {
*rank_working_ptr = static_cast<int64_t>(rank_32);
}
}
);
#endif
}
// This is a type and driver dispatching helper function for 'apply_lstsq'
void lstsq_kernel(const Tensor& a, Tensor& b, Tensor& rank, Tensor& singular_values, Tensor& infos, double rcond, std::string driver_name) {
static auto driver_string_to_type = std::unordered_map<c10::string_view, LapackLstsqDriverType>({
{"gels", at::native::LapackLstsqDriverType::Gels},
{"gelsy", at::native::LapackLstsqDriverType::Gelsy},
{"gelsd", at::native::LapackLstsqDriverType::Gelsd},
{"gelss", at::native::LapackLstsqDriverType::Gelss}
});
auto driver_type = driver_string_to_type[driver_name];
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(a.scalar_type(), "linalg_lstsq_cpu", [&]{
apply_lstsq<scalar_t>(a, b, rank, singular_values, infos, rcond, driver_type);
});
}
/*
The ormqr function multiplies Q with another matrix from a sequence of
elementary reflectors, such as is produced by the geqrf function.
Args:
* `input` - Tensor with elementary reflectors below the diagonal,
encoding the matrix Q.
* `tau` - Tensor containing the magnitudes of the elementary
reflectors.
* `other` - [in] Tensor containing the matrix to be multiplied.
[out] result of the matrix multiplication with Q.
* `left` - bool, determining whether `other` is left- or right-multiplied with Q.
* `transpose` - bool, determining whether to transpose (or conjugate transpose) Q before multiplying.
For further details, please see the LAPACK documentation.
*/
template <typename scalar_t>
void apply_ormqr(const Tensor& input, const Tensor& tau, const Tensor& other, bool left, bool transpose) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(false, "Calling torch.ormqr on a CPU tensor requires compiling ",
"PyTorch with LAPACK. Please use PyTorch built with LAPACK support.");
#else
using value_t = typename c10::scalar_value_type<scalar_t>::type;
char side = left ? 'L' : 'R';
char trans = transpose ? (input.is_complex() ? 'C' : 'T') : 'N';
auto input_data = input.data_ptr<scalar_t>();
auto tau_data = tau.data_ptr<scalar_t>();
auto other_data = other.data_ptr<scalar_t>();
auto input_matrix_stride = matrixStride(input);
auto other_matrix_stride = matrixStride(other);
auto tau_stride = tau.size(-1);
auto batch_size = batchCount(input);
auto m = other.size(-2);
auto n = other.size(-1);
auto k = tau.size(-1);
auto lda = std::max<int64_t>(1, left ? m : n);
auto ldc = std::max<int64_t>(1, m);
int info = 0;
// LAPACK's requirement
TORCH_INTERNAL_ASSERT_DEBUG_ONLY((left ? m : n) >= k);
// Query for the optimal size of the workspace tensor
int lwork = -1;
scalar_t wkopt;
lapackOrmqr<scalar_t>(side, trans, m, n, k, input_data, lda, tau_data, other_data, ldc, &wkopt, lwork, &info);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(info == 0);
lwork = std::max<int>(1, real_impl<scalar_t, value_t>(wkopt));
Tensor work = at::empty({lwork}, input.options());
for (const auto i : c10::irange(batch_size)) {
scalar_t* input_working_ptr = &input_data[i * input_matrix_stride];
scalar_t* other_working_ptr = &other_data[i * other_matrix_stride];
scalar_t* tau_working_ptr = &tau_data[i * tau_stride];
// now compute the actual result
lapackOrmqr<scalar_t>(
side, trans, m, n, k,
input_working_ptr, lda,
tau_working_ptr,
other_working_ptr, ldc,
work.data_ptr<scalar_t>(), lwork, &info);
// info from lapackOrmqr only reports if the i-th parameter is wrong
// so we don't need to check it all the time
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(info == 0);
}
#endif
}
// This is a type dispatching helper function for 'apply_ormqr'
void ormqr_kernel(const Tensor& input, const Tensor& tau, const Tensor& other, bool left, bool transpose) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(input.scalar_type(), "ormqr_cpu", [&]{
apply_ormqr<scalar_t>(input, tau, other, left, transpose);
});
}
/*
Solves the matrix equation op(A) X = B
X and B are n-by-nrhs matrices, A is a unit, or non-unit, upper or lower triangular matrix
and op(A) is one of op(A) = A or op(A) = A^T or op(A) = A^H.
This is an in-place routine, content of 'B' is overwritten.
'upper' controls the portion of input matrix to consider in computations,
'transpose' chooses op(A)
'unitriangular' if true then the diagonal elements of A are assumed to be 1
and the actual diagonal values are not used.
*/
template<typename scalar_t>
void apply_triangular_solve(const Tensor& A, const Tensor& B, bool left, bool upper, TransposeType transpose, bool unitriangular) {
#if !AT_BUILD_WITH_BLAS()
TORCH_CHECK(
false,
"Calling torch.triangular_solve on a CPU tensor requires compiling ",
"PyTorch with BLAS. Please use PyTorch built with BLAS support.");
#else
char uplo = upper ? 'U' : 'L';
char diag = unitriangular ? 'U' : 'N';
char side = left ? 'L' : 'R';
const char trans = to_blas(transpose);
auto A_data = A.data_ptr<scalar_t>();
auto B_data = B.data_ptr<scalar_t>();
auto A_mat_stride = matrixStride(A);
auto B_mat_stride = matrixStride(B);
auto batch_size = batchCount(A);
// This allows to pass rectangular A and B when left = True
auto m = left ? A.size(-1) : B.size(-2);
auto n = B.size(-1);
auto lda = std::max<int64_t>(1, A.size(-2));
auto ldb = std::max<int64_t>(1, B.size(-2));
for (const auto i : c10::irange(batch_size)) {
scalar_t* A_working_ptr = &A_data[i * A_mat_stride];
scalar_t* B_working_ptr = &B_data[i * B_mat_stride];
blasTriangularSolve<scalar_t>(side, uplo, trans, diag, m, n, A_working_ptr, lda, B_working_ptr, ldb);
}
#endif
}
void triangular_solve_kernel(const Tensor& A, const Tensor& B, bool left, bool upper, TransposeType transpose, bool unitriangular) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(A.scalar_type(), "triangular_solve_cpu", [&]{
apply_triangular_solve<scalar_t>(A, B, left, upper, transpose, unitriangular);
});
}
template <typename scalar_t>
void apply_ldl_factor(
const Tensor& A,
const Tensor& pivots,
const Tensor& info,
bool upper,
bool hermitian) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(
false,
"Calling torch.linalg.ldl_factor on a CPU tensor requires compiling ",
"PyTorch with LAPACK. Please use PyTorch built with LAPACK support.");
#else
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(batchCount(A) > 0);
auto batch_size = batchCount(A);
auto n = A.size(-2);
auto leading_dim = A.stride(-1);
auto uplo = upper ? 'U' : 'L';
auto a_stride = A.dim() > 2 ? A.stride(-3) : 0;
auto pivots_stride = pivots.dim() > 1 ? pivots.stride(-2) : 0;
auto a_data = A.data_ptr<scalar_t>();
auto pivots_data = pivots.data_ptr<int>();
auto info_data = info.data_ptr<int>();
auto ldl_func =
hermitian ? lapackLdlHermitian<scalar_t> : lapackLdlSymmetric<scalar_t>;
scalar_t wkopt;
ldl_func(uplo, n, a_data, leading_dim, pivots_data, &wkopt, -1, info_data);
using value_t = typename c10::scalar_value_type<scalar_t>::type;
int lwork = std::max<int>(1, real_impl<scalar_t, value_t>(wkopt));
Tensor work = at::empty({lwork}, A.dtype());
auto work_data = work.mutable_data_ptr<scalar_t>();
for (const auto i : c10::irange(batch_size)) {
scalar_t* a_working_ptr = &a_data[i * a_stride];
auto* pivots_working_ptr = &pivots_data[i * pivots_stride];
auto* info_working_ptr = &info_data[i];
ldl_func(
uplo,
n,
a_working_ptr,
leading_dim,
pivots_working_ptr,
work_data,
lwork,
info_working_ptr);
}
#endif
}
void ldl_factor_kernel(
const Tensor& LD,
const Tensor& pivots,
const Tensor& info,
bool upper,
bool hermitian) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(
LD.scalar_type(), "ldl_factor_kernel_cpu", [&] {
apply_ldl_factor<scalar_t>(LD, pivots, info, upper, hermitian);
});
}
template <typename scalar_t>
void apply_ldl_solve(
const Tensor& A,
const Tensor& pivots,
const Tensor& B,
bool upper,
bool hermitian) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(
false,
"Calling torch.linalg.ldl_factor on a CPU tensor requires compiling ",
"PyTorch with LAPACK. Please use PyTorch built with LAPACK support.");
#else
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(batchCount(A) > 0);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(batchCount(pivots.unsqueeze(-1)) > 0);
auto batch_size = batchCount(B);
auto n = A.size(-2);
auto nrhs = B.size(-1);
auto lda = A.stride(-1);
auto ldb = B.stride(-1);
auto uplo = upper ? 'U' : 'L';
auto a_stride = A.dim() > 2 ? A.stride(-3) : 0;
auto b_stride = B.dim() > 2 ? B.stride(-3) : 0;
auto pivots_stride = pivots.dim() > 1 ? pivots.stride(-2) : 0;
auto a_data = A.data_ptr<scalar_t>();
auto b_data = B.data_ptr<scalar_t>();
auto pivots_ = pivots.to(kInt);
auto pivots_data = pivots_.data_ptr<int>();
auto ldl_solve_func = hermitian ? lapackLdlSolveHermitian<scalar_t>
: lapackLdlSolveSymmetric<scalar_t>;
int info = 0;
for (const auto i : c10::irange(batch_size)) {
scalar_t* a_working_ptr = &a_data[i * a_stride];
scalar_t* b_working_ptr = &b_data[i * b_stride];
auto* pivots_working_ptr = &pivots_data[i * pivots_stride];
ldl_solve_func(
uplo,
n,
nrhs,
a_working_ptr,
lda,
pivots_working_ptr,
b_working_ptr,
ldb,
&info);
}
TORCH_INTERNAL_ASSERT(info == 0);
#endif
}
void ldl_solve_kernel(
const Tensor& LD,
const Tensor& pivots,
const Tensor& result,
bool upper,
bool hermitian) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(
LD.scalar_type(), "ldl_solve_kernel_cpu", [&] {
apply_ldl_solve<scalar_t>(LD, pivots, result, upper, hermitian);
});
}
/*
Computes the LU decomposition of a m×n matrix or batch of matrices in 'input' tensor.
This is an in-place routine, content of 'input', 'pivots', and 'infos' is overwritten.
Args:
* `input` - [in] the input matrix for LU decomposition
[out] the LU decomposition
* `pivots` - [out] the pivot indices
* `infos` - [out] error codes, positive values indicate singular matrices
* `compute_pivots` - should always be true (can be false only for CUDA)
For further details, please see the LAPACK documentation for GETRF.
*/
template <typename scalar_t>
void apply_lu_factor(const Tensor& input, const Tensor& pivots, const Tensor& infos, bool compute_pivots) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(
false,
"Calling torch.linalg.lu_factor on a CPU tensor requires compiling ",
"PyTorch with LAPACK. Please use PyTorch built with LAPACK support.");
#else
TORCH_CHECK(compute_pivots, "linalg.lu_factor: LU without pivoting is not implemented on the CPU");
auto input_data = input.data_ptr<scalar_t>();
auto pivots_data = pivots.data_ptr<int>();
auto infos_data = infos.data_ptr<int>();
auto input_matrix_stride = matrixStride(input);
auto pivots_stride = pivots.size(-1);
auto batch_size = batchCount(input);
auto m = input.size(-2);
auto n = input.size(-1);
auto leading_dimension = std::max<int64_t>(1, m);
const auto loop = [&](int64_t start, int64_t end) {
for (const auto i : c10::irange(start, end)) {
scalar_t* input_working_ptr = &input_data[i * input_matrix_stride];
int* pivots_working_ptr = &pivots_data[i * pivots_stride];
int* infos_working_ptr = &infos_data[i];
lapackLu<scalar_t>(
m,
n,
input_working_ptr,
leading_dimension,
pivots_working_ptr,
infos_working_ptr);
}
};
// avoid overflow
float matrix_rank = float(std::min(m, n));
// A heuristic tested on a 32 core/socket ICX system
// https://github.com/pytorch/pytorch/pull/93037#discussion_r1090112948
int64_t chunk_size_per_thread = int64_t(
std::min(1.0, 3200.0 / (matrix_rank * matrix_rank * matrix_rank)));
int64_t grain_size = chunk_size_per_thread * at::get_num_threads();
at::parallel_for(0, batch_size, grain_size, loop);
#endif
}
// This is a type dispatching helper function for 'apply_lu'
void lu_factor_kernel(const Tensor& input, const Tensor& pivots, const Tensor& infos, bool compute_pivots) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(input.scalar_type(), "lu_cpu", [&]{
apply_lu_factor<scalar_t>(input, pivots, infos, compute_pivots);
});
}
/*
Solves the matrix equation A X = B
X and B are n-by-nrhs matrices, A is represented using the LU factorization.
This is an in-place routine, content of `b` is overwritten.
Args:
* `b` - [in] the right hand side matrix B
[out] the solution matrix X
* `lu` - [in] the LU factorization of matrix A (see at::linalg_lu_factor)
* `pivots` - [in] the pivot indices (see at::linalg_lu_factor)
For further details, please see the LAPACK documentation for GETRS.
*/
template <typename scalar_t>
void apply_lu_solve(const Tensor& LU, const Tensor& pivots, const Tensor& B, TransposeType transpose) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(
false,
"Calling linalg.lu_solve on a CPU tensor requires compiling ",
"PyTorch with LAPACK. Please use PyTorch built with LAPACK support.");
#else
auto b_data = B.data_ptr<scalar_t>();
auto lu_data = LU.data_ptr<scalar_t>();
const auto trans = to_blas(transpose);
auto pivots_data = pivots.data_ptr<int>();
auto b_stride = matrixStride(B);
auto lu_stride = LU.dim() > 2 ? LU.stride(-3) : 0;
auto pivots_stride = pivots.dim() > 1 ? pivots.stride(-2) : 0;
auto batch_size = batchCount(B);
auto n = LU.size(-2);
auto nrhs = B.size(-1);
auto leading_dimension = std::max<int64_t>(1, n);
int info = 0;
// lu and pivots tensors can be broadcast to B
// here we construct a helper indexing tensor to linearly index into LU and pivots
IntArrayRef lu_batch_shape(LU.sizes().data(), LU.dim() - 2);
IntArrayRef b_batch_shape(B.sizes().data(), B.dim() - 2);
BroadcastLinearIndices lu_index(
batchCount(LU), lu_batch_shape, b_batch_shape);
for (const auto i : c10::irange(batch_size)) {
int64_t lu_index_i = lu_index(i);
scalar_t* b_working_ptr = &b_data[i * b_stride];
scalar_t* lu_working_ptr = &lu_data[lu_index_i * lu_stride];
int* pivots_working_ptr = &pivots_data[lu_index_i * pivots_stride];
lapackLuSolve<scalar_t>(trans, n, nrhs, lu_working_ptr, leading_dimension, pivots_working_ptr,
b_working_ptr, leading_dimension, &info);