forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFractionalMaxPooling.h
80 lines (70 loc) · 2.11 KB
/
FractionalMaxPooling.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/TensorUtils.h>
#include <c10/util/irange.h>
namespace at::native {
template<typename scalar_t>
static inline std::vector<int> generate_intervals(
scalar_t sample,
int64_t inputSize,
int64_t outputSize,
int64_t poolSize) {
std::vector<int> sequence(outputSize);
if (outputSize > 1) {
scalar_t alpha = static_cast<scalar_t>(inputSize - poolSize) /
static_cast<scalar_t>(outputSize - 1);
for (const auto i : c10::irange(outputSize - 1)) {
sequence[i] =
static_cast<int>((i + sample) * alpha) - static_cast<int>(sample * alpha);
}
}
if (outputSize > 0) {
sequence[outputSize - 1] = inputSize - poolSize;
}
return sequence;
}
template <int64_t ndim>
static inline void fractional_max_pool_check_shape(
const Tensor& input,
const Tensor& randomSamples) {
TORCH_CHECK(
input.scalar_type() == randomSamples.scalar_type(),
"Expect _random_samples to have the same dtype as input");
int64_t ndimension = randomSamples.ndimension();
TORCH_CHECK(
ndimension == 3,
"Expect _random_samples to have 3 dimensions, got ", ndimension);
int64_t N = randomSamples.size(0);
int64_t C = randomSamples.size(1);
int64_t D = randomSamples.size(2);
int64_t input_batch, input_channel;
if (ndim == 2) {
// fractional_max_pool2d
if (input.ndimension() == 3) {
input_batch = 1;
input_channel = input.size(0);
} else {
input_batch = input.size(0);
input_channel = input.size(1);
}
} else {
// factional_max_pool3d
if (input.ndimension() == 4) {
input_batch = 1;
input_channel = input.size(0);
} else {
input_batch = input.size(0);
input_channel = input.size(1);
}
}
TORCH_CHECK(
N >= input_batch,
"Expect _random_samples.size(0) no less then input batch size.");
TORCH_CHECK(
C == input_channel,
"Expect _random_samples.size(1) equals to input channel size.");
TORCH_CHECK(
D == ndim,
"Expect _random_samples.size(2) equals to ", ndim, "; got ", D, ".");
}
} // namespace at::native