forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_test_common.py
330 lines (240 loc) · 9.26 KB
/
pytorch_test_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Owner(s): ["module: onnx"]
from __future__ import annotations
import functools
import os
import random
import sys
import unittest
from typing import Optional
import numpy as np
import packaging.version
import torch
from torch.autograd import function
from torch.onnx._internal import diagnostics
from torch.testing._internal import common_utils
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.insert(-1, pytorch_test_dir)
torch.set_default_tensor_type("torch.FloatTensor")
BATCH_SIZE = 2
RNN_BATCH_SIZE = 7
RNN_SEQUENCE_LENGTH = 11
RNN_INPUT_SIZE = 5
RNN_HIDDEN_SIZE = 3
def _skipper(condition, reason):
def decorator(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
if condition():
raise unittest.SkipTest(reason)
return f(*args, **kwargs)
return wrapper
return decorator
skipIfNoCuda = _skipper(lambda: not torch.cuda.is_available(), "CUDA is not available")
skipIfTravis = _skipper(lambda: os.getenv("TRAVIS"), "Skip In Travis")
skipIfNoBFloat16Cuda = _skipper(
lambda: not torch.cuda.is_bf16_supported(), "BFloat16 CUDA is not available"
)
skipIfQuantizationBackendQNNPack = _skipper(
lambda: torch.backends.quantized.engine == "qnnpack",
"Not compatible with QNNPack quantization backend",
)
# skips tests for all versions below min_opset_version.
# if exporting the op is only supported after a specific version,
# add this wrapper to prevent running the test for opset_versions
# smaller than the currently tested opset_version
def skipIfUnsupportedMinOpsetVersion(min_opset_version):
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if self.opset_version < min_opset_version:
raise unittest.SkipTest(
f"Unsupported opset_version: {self.opset_version} < {min_opset_version}"
)
return func(self, *args, **kwargs)
return wrapper
return skip_dec
# skips tests for all versions above max_opset_version.
def skipIfUnsupportedMaxOpsetVersion(max_opset_version):
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if self.opset_version > max_opset_version:
raise unittest.SkipTest(
f"Unsupported opset_version: {self.opset_version} > {max_opset_version}"
)
return func(self, *args, **kwargs)
return wrapper
return skip_dec
# skips tests for all opset versions.
def skipForAllOpsetVersions():
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if self.opset_version:
raise unittest.SkipTest(
"Skip verify test for unsupported opset_version"
)
return func(self, *args, **kwargs)
return wrapper
return skip_dec
def skipTraceTest(skip_before_opset_version: Optional[int] = None, reason: str = ""):
"""Skip tracing test for opset version less than skip_before_opset_version.
Args:
skip_before_opset_version: The opset version before which to skip tracing test.
If None, tracing test is always skipped.
reason: The reason for skipping tracing test.
Returns:
A decorator for skipping tracing test.
"""
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if skip_before_opset_version is not None:
self.skip_this_opset = self.opset_version < skip_before_opset_version
else:
self.skip_this_opset = True
if self.skip_this_opset and not self.is_script:
raise unittest.SkipTest(f"Skip verify test for torch trace. {reason}")
return func(self, *args, **kwargs)
return wrapper
return skip_dec
def skipScriptTest(skip_before_opset_version: Optional[int] = None, reason: str = ""):
"""Skip scripting test for opset version less than skip_before_opset_version.
Args:
skip_before_opset_version: The opset version before which to skip scripting test.
If None, scripting test is always skipped.
reason: The reason for skipping scripting test.
Returns:
A decorator for skipping scripting test.
"""
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if skip_before_opset_version is not None:
self.skip_this_opset = self.opset_version < skip_before_opset_version
else:
self.skip_this_opset = True
if self.skip_this_opset and self.is_script:
raise unittest.SkipTest(f"Skip verify test for TorchScript. {reason}")
return func(self, *args, **kwargs)
return wrapper
return skip_dec
# TODO(titaiwang): dynamic_only is specific to the situation that dynamic fx exporter
# is not yet supported by ORT until 1.15.0. Remove dynamic_only once ORT 1.15.0 is released.
def skip_min_ort_version(reason: str, version: str, dynamic_only: bool = False):
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if (
packaging.version.parse(self.ort_version).release
< packaging.version.parse(version).release
):
if dynamic_only and not self.dynamic_shapes:
return func(self, *args, **kwargs)
raise unittest.SkipTest(
f"ONNX Runtime version: {version} is older than required version {version}. "
f"Reason: {reason}."
)
return func(self, *args, **kwargs)
return wrapper
return skip_dec
def skip_dynamic_fx_test(reason: str):
"""Skip dynamic exporting test.
Args:
reason: The reason for skipping dynamic exporting test.
Returns:
A decorator for skipping dynamic exporting test.
"""
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if self.dynamic_shapes:
raise unittest.SkipTest(
f"Skip verify dynamic shapes test for FX. {reason}"
)
return func(self, *args, **kwargs)
return wrapper
return skip_dec
def skip_op_level_debug_test(reason: str):
"""Skip tests with op_level_debug enabled.
Args:
reason: The reason for skipping tests with op_level_debug enabled.
Returns:
A decorator for skipping tests with op_level_debug enabled.
"""
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if self.op_level_debug:
raise unittest.SkipTest(
f"Skip test with op_level_debug enabled. {reason}"
)
return func(self, *args, **kwargs)
return wrapper
return skip_dec
def skip_in_ci(reason: str):
"""Skip test in CI.
Args:
reason: The reason for skipping test in CI.
Returns:
A decorator for skipping test in CI.
"""
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if os.getenv("CI"):
raise unittest.SkipTest(f"Skip test in CI. {reason}")
return func(self, *args, **kwargs)
return wrapper
return skip_dec
def xfail(reason: str):
"""Expect failure.
Args:
reason: The reason for expected failure.
Returns:
A decorator for expecting test failure.
"""
return unittest.expectedFailure
# skips tests for opset_versions listed in unsupported_opset_versions.
# if the caffe2 test cannot be run for a specific version, add this wrapper
# (for example, an op was modified but the change is not supported in caffe2)
def skipIfUnsupportedOpsetVersion(unsupported_opset_versions):
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if self.opset_version in unsupported_opset_versions:
raise unittest.SkipTest(
"Skip verify test for unsupported opset_version"
)
return func(self, *args, **kwargs)
return wrapper
return skip_dec
def skipShapeChecking(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
self.check_shape = False
return func(self, *args, **kwargs)
return wrapper
def skipDtypeChecking(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
self.check_dtype = False
return func(self, *args, **kwargs)
return wrapper
def flatten(x):
return tuple(function._iter_filter(lambda o: isinstance(o, torch.Tensor))(x))
def set_rng_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
class ExportTestCase(common_utils.TestCase):
"""Test case for ONNX export.
Any test case that tests functionalities under torch.onnx should inherit from this class.
"""
def setUp(self):
super().setUp()
# TODO(#88264): Flaky test failures after changing seed.
set_rng_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
diagnostics.engine.clear()