forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_cuda.py
4066 lines (3364 loc) · 174 KB
/
test_cuda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: cuda"]
from itertools import product, chain
import collections
import contextlib
from copy import deepcopy
import gc
import os
import pickle
import sys
import tempfile
import threading
import unittest
import warnings
import subprocess
import random
from random import randint
import json
import torch
import torch.cuda
from torch.cuda._memory_viz import profile_plot, _profile_to_snapshot
from torch.cuda._memory_viz import trace_plot
from torch.cuda._memory_viz import segment_plot
from torch import inf, nan
from torch.utils.checkpoint import checkpoint_sequential
from torch.testing._internal.common_utils import TestCase, freeze_rng_state, run_tests, \
NO_MULTIPROCESSING_SPAWN, skipIfRocm, load_tests, IS_WINDOWS, \
slowTest, skipCUDANonDefaultStreamIf, skipCUDAMemoryLeakCheckIf, TEST_CUDA, TEST_CUDA_GRAPH, TEST_WITH_ROCM, TEST_NUMPY, \
get_cycles_per_ms, parametrize, instantiate_parametrized_tests, subtest, IS_JETSON, gcIfJetson, NoTest, IS_LINUX
from torch.testing._internal.common_cuda import TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers
from torch.testing._internal.autocast_test_lists import AutocastTestLists
from torch.utils.viz._cycles import observe_tensor_cycles
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
if not TEST_CUDA:
print('CUDA not available, skipping tests', file=sys.stderr)
TestCase = NoTest # noqa: F811
try:
import torchvision.models # noqa: F401
from torchvision.models import resnet18 # noqa: F401
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
TEST_CUDAMALLOCASYNC = TEST_CUDA and (torch.cuda.get_allocator_backend() == "cudaMallocAsync")
TEST_LARGE_TENSOR = TEST_CUDA
TEST_MEDIUM_TENSOR = TEST_CUDA
TEST_BF16 = False
TEST_PYNVML = not torch.cuda._HAS_PYNVML
if TEST_CUDA:
TEST_LARGE_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 12e9
TEST_MEDIUM_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 6e9
TEST_BF16 = torch.cuda.is_bf16_supported()
_cycles_per_ms = None
class TestCuda(TestCase):
_do_cuda_memory_leak_check = True
_do_cuda_non_default_stream = True
FIFTY_MIL_CYCLES = 50000000
def setUp(self):
super().setUp()
self.autocast_lists = AutocastTestLists(torch.device('cuda:0'))
def tearDown(self):
del self.autocast_lists
super().tearDown()
def test_cudart_register(self):
t = torch.ones(20)
self.assertFalse(t.is_pinned())
cudart = torch.cuda.cudart()
r = cudart.cudaHostRegister(t.data_ptr(), t.numel() * t.element_size(), 0)
self.assertEqual(r, 0)
self.assertTrue(t.is_pinned())
r = cudart.cudaHostUnregister(t.data_ptr())
self.assertEqual(r, 0)
self.assertFalse(t.is_pinned())
def test_memory_allocation(self):
gc.collect()
torch.cuda.empty_cache()
mem = None
size = 1
prev = 0
try:
prev = torch.cuda.memory_allocated()
mem = torch.cuda.caching_allocator_alloc(size)
self.assertGreater(torch.cuda.memory_allocated(), prev)
finally:
if mem is not None:
torch.cuda.caching_allocator_delete(mem)
self.assertEqual(torch.cuda.memory_allocated(), prev)
def test_check_error(self):
# Assert this call doesn't raise.
torch.cuda.check_error(0)
with self.assertRaisesRegex(torch.cuda.CudaError,
"out of memory|hipErrorOutOfMemory"):
torch.cuda.check_error(2)
def test_cuda_get_device_name(self):
# Testing the behaviour with None as an argument
current_device = torch.cuda.current_device()
current_device_name = torch.cuda.get_device_name(current_device)
device_name_None = torch.cuda.get_device_name(None)
self.assertEqual(current_device_name, device_name_None)
# Testing the behaviour for No argument
device_name_no_argument = torch.cuda.get_device_name()
self.assertEqual(current_device_name, device_name_no_argument)
def test_cuda_get_device_capability(self):
# Testing the behaviour with None as an argument
current_device = torch.cuda.current_device()
current_device_capability = torch.cuda.get_device_capability(current_device)
device_capability_None = torch.cuda.get_device_capability(None)
self.assertEqual(current_device_capability, device_capability_None)
# Testing the behaviour for No argument
device_capability_no_argument = torch.cuda.get_device_capability()
self.assertEqual(current_device_capability, device_capability_no_argument)
def test_out_of_memory(self):
tensor = torch.zeros(1024, device='cuda')
oom_regex = "would exceed allowed memory" if TEST_CUDAMALLOCASYNC else \
"Tried to allocate 800000000.00 GiB"
with self.assertRaisesRegex(RuntimeError, oom_regex):
torch.empty(1024 * 1024 * 1024 * 800000000, dtype=torch.int8, device='cuda')
with self.assertRaisesRegex(RuntimeError, "Tried to allocate more than 1EB memory"):
torch.empty(1024 * 1024 * 1024 * 8000000000, dtype=torch.int8, device='cuda')
# ensure out of memory error doesn't disturb subsequent kernel
tensor.fill_(1)
self.assertTrue((tensor == 1).all())
@unittest.skipIf(TEST_CUDAMALLOCASYNC or IS_JETSON, "Segmentation fault (core dumped)")
def test_out_of_memory_retry(self):
torch.cuda.empty_cache()
total_memory = torch.cuda.get_device_properties(0).total_memory
oom_regex = "would exceed allowed memory" if TEST_CUDAMALLOCASYNC else \
"Tried to allocate"
size = int(total_memory * 0.5)
a = torch.empty(size , dtype=torch.int8, device='cuda')
with self.assertRaisesRegex(RuntimeError, oom_regex):
b = torch.empty(size, dtype=torch.int8, device='cuda')
del a
b = torch.empty(size, dtype=torch.int8, device='cuda')
del b
# We used a lot of memory here, clean up so we don't affect other tests too much
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
def test_set_per_process_memory_fraction(self):
# test invalid fraction value.
with self.assertRaisesRegex(TypeError, "Invalid type"):
torch.cuda.set_per_process_memory_fraction(int(1))
with self.assertRaisesRegex(ValueError, "Invalid fraction value"):
torch.cuda.set_per_process_memory_fraction(-0.1)
with self.assertRaisesRegex(ValueError, "Invalid fraction value"):
torch.cuda.set_per_process_memory_fraction(2.0)
tensor = torch.zeros(1024, device='cuda')
torch.cuda.empty_cache()
total_memory = torch.cuda.get_device_properties(0).total_memory
torch.cuda.set_per_process_memory_fraction(0.5, 0)
# test 0.499 allocation is ok.
application = int(total_memory * 0.499) - torch.cuda.max_memory_reserved()
tmp_tensor = torch.empty(application, dtype=torch.int8, device='cuda')
del tmp_tensor
torch.cuda.empty_cache()
application = int(total_memory * 0.5)
# it will get OOM when try to allocate more than half memory.
oom_regex = "would exceed allowed memory" if TEST_CUDAMALLOCASYNC else \
"out of memory"
with self.assertRaisesRegex(RuntimeError, oom_regex):
torch.empty(application, dtype=torch.int8, device='cuda')
# ensure out of memory error doesn't disturb subsequent kernel
tensor.fill_(1)
self.assertTrue((tensor == 1).all())
def test_copy_non_blocking(self):
def _test_copy_non_blocking(a, b):
event = torch.cuda.Event()
a.copy_(b, non_blocking=True)
event.record()
event.synchronize()
self.assertEqual(a, b)
# 10MB copies
x = torch.ones(10000000, dtype=torch.uint8).cuda()
y = torch.zeros(10000000, dtype=torch.uint8).pin_memory()
_test_copy_non_blocking(x, y)
x = torch.zeros(10000000, dtype=torch.uint8).pin_memory()
y = torch.ones(10000000, dtype=torch.uint8).cuda()
_test_copy_non_blocking(x, y)
# Test the case where the pinned data_ptr is not equal to the storage data_ptr.
x_base = torch.zeros(10000000, dtype=torch.uint8).pin_memory()
x = x_base[1:]
self.assertTrue(x.is_pinned())
self.assertTrue(x_base.is_pinned())
self.assertNotEqual(x_base.data_ptr(), x.data_ptr())
self.assertEqual(x_base.storage().data_ptr(), x.storage().data_ptr())
y = torch.ones(10000000 - 1, dtype=torch.uint8).cuda()
_test_copy_non_blocking(x, y)
def test_to_non_blocking(self):
stream = torch.cuda.current_stream()
def _test_to_non_blocking(a, non_blocking, dst):
torch.cuda.synchronize()
# Pushes an 0.1 second spin to stream so if the copy is non blocking,
# stream will almost surely be active when we query().
torch.cuda._sleep(int(100 * get_cycles_per_ms()))
b = a.to(device=dst, non_blocking=non_blocking)
self.assertEqual(stream.query(), not non_blocking)
stream.synchronize()
self.assertEqual(a, b)
self.assertTrue(b.is_pinned() == (non_blocking and dst == "cpu"))
for dst, try_non_blocking in product(("cuda", "cpu"), (True, False)):
# Creates source on the opposite device from destination.
src = torch.randn(1000000,
device="cuda" if dst == "cpu" else "cpu",
pin_memory=True if dst == "cuda" else False)
_test_to_non_blocking(src, try_non_blocking, dst)
def test_to_cpu_blocking_by_default(self):
src = torch.randn(1000000, device="cuda")
torch.cuda.synchronize()
torch.cuda._sleep(int(100 * get_cycles_per_ms()))
dst = src.to(device="cpu")
self.assertEqual(torch.cuda.current_stream().query(), True)
self.assertEqual(src, dst)
self.assertFalse(dst.is_pinned())
def test_serialization_array_with_storage(self):
x = torch.randn(5, 5).cuda()
y = torch.IntTensor(2, 5).fill_(0).cuda()
q = [x, y, x, y.storage()]
with tempfile.NamedTemporaryFile() as f:
torch.save(q, f)
f.seek(0)
q_copy = torch.load(f)
self.assertEqual(q_copy, q, atol=0, rtol=0)
q_copy[0].fill_(5)
self.assertEqual(q_copy[0], q_copy[2], atol=0, rtol=0)
self.assertTrue(isinstance(q_copy[0], torch.cuda.FloatTensor))
self.assertTrue(isinstance(q_copy[1], torch.cuda.IntTensor))
self.assertTrue(isinstance(q_copy[2], torch.cuda.FloatTensor))
self.assertTrue(isinstance(q_copy[3], torch.storage.TypedStorage))
self.assertTrue(isinstance(q_copy[3]._untyped_storage, torch.UntypedStorage))
q_copy[1].fill_(10)
self.assertEqual(q_copy[3], torch.cuda.IntStorage(10).fill_(10))
@unittest.skipIf(TEST_CUDAMALLOCASYNC or TEST_WITH_ROCM, "temporarily disabled for async")
def test_cublas_workspace_explicit_allocation(self):
a = torch.randn(7, 7, device='cuda', requires_grad=False)
default_workspace_size = 4096 * 2 * 1024 + 16 * 8 * 1024 # :4096:2:16:8
# different size (32 MiB) expected on Hopper GPU
if torch.cuda.get_device_capability() == (9, 0):
default_workspace_size = 4096 * 8 * 1024
def check_workspace_size(inp):
torch._C._cuda_clearCublasWorkspaces()
start = torch.torch.cuda.memory_stats()['active_bytes.all.allocated']
with torch.no_grad():
torch.matmul(inp, inp)
finish = torch.torch.cuda.memory_stats()['active_bytes.all.allocated']
return finish - start
# check default
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ''
self.assertTrue(abs(check_workspace_size(a) - default_workspace_size) < 524288)
# check default with bad user config
os.environ['CUBLAS_WORKSPACE_CONFIG'] = '-1'
self.assertTrue(abs(check_workspace_size(a) - default_workspace_size) < 524288)
# check valid config
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':128:8:64:16:32:32'
self.assertTrue(abs(check_workspace_size(a) - (3072 * 1024)) < 524288)
torch._C._cuda_clearCublasWorkspaces()
def test_cublas_allow_tf32_get_set(self):
skip_tf32_cublas = 'TORCH_ALLOW_TF32_CUBLAS_OVERRIDE' in os.environ and\
int(os.environ['TORCH_ALLOW_TF32_CUBLAS_OVERRIDE'])
if skip_tf32_cublas:
self.assertTrue(torch.backends.cuda.matmul.allow_tf32)
return
orig = torch.backends.cuda.matmul.allow_tf32
self.assertEqual(torch._C._get_cublas_allow_tf32(), orig)
torch.backends.cuda.matmul.allow_tf32 = not orig
self.assertEqual(torch._C._get_cublas_allow_tf32(), not orig)
torch.backends.cuda.matmul.allow_tf32 = orig
def test_float32_matmul_precision_get_set(self):
orig = torch.get_float32_matmul_precision()
skip_tf32_cublas = 'TORCH_ALLOW_TF32_CUBLAS_OVERRIDE' in os.environ and\
int(os.environ['TORCH_ALLOW_TF32_CUBLAS_OVERRIDE'])
# this is really just checking that the environment variable is respected during testing
# and not overwritten by another function that doesn't revert it to the intitial value
if not skip_tf32_cublas:
self.assertFalse(torch.backends.cuda.matmul.allow_tf32)
self.assertEqual(torch.get_float32_matmul_precision(), 'highest')
else:
self.assertTrue(torch.backends.cuda.matmul.allow_tf32)
for p in ('medium', 'high'):
torch.set_float32_matmul_precision(p)
self.assertEqual(torch.get_float32_matmul_precision(), p)
self.assertTrue(torch.backends.cuda.matmul.allow_tf32)
torch.set_float32_matmul_precision('highest')
self.assertEqual(torch.get_float32_matmul_precision(), 'highest')
self.assertFalse(torch.backends.cuda.matmul.allow_tf32)
torch.set_float32_matmul_precision(orig)
def test_cublas_allow_fp16_reduced_precision_reduction_get_set(self):
orig = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction
self.assertEqual(torch._C._get_cublas_allow_fp16_reduced_precision_reduction(), orig)
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = not orig
self.assertEqual(torch._C._get_cublas_allow_fp16_reduced_precision_reduction(), not orig)
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig
def test_cublas_allow_bf16_reduced_precision_reduction_get_set(self):
orig = torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction
self.assertEqual(torch._C._get_cublas_allow_bf16_reduced_precision_reduction(), orig)
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = not orig
self.assertEqual(torch._C._get_cublas_allow_bf16_reduced_precision_reduction(), not orig)
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = orig
def test_cudnn_allow_tf32_get_set(self):
with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=False):
self.assertFalse(torch.backends.cudnn.allow_tf32)
with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=True):
self.assertTrue(torch.backends.cudnn.allow_tf32)
def test_type_conversions(self):
x = torch.randn(5, 5)
self.assertIsInstance(x.float(), torch.FloatTensor)
self.assertIsInstance(x.cuda().double(), torch.cuda.DoubleTensor)
self.assertIsInstance(x.cuda().float(), torch.cuda.FloatTensor)
self.assertIsInstance(x.cuda().float().cpu(), torch.FloatTensor)
self.assertIsInstance(x.cuda().float().cpu().int(), torch.IntTensor)
y = x.storage()
self.assertIsInstance(y.float(), torch.FloatStorage)
self.assertIsInstance(y.cuda().double(), torch.cuda.DoubleStorage)
self.assertIsInstance(y.cuda().float(), torch.cuda.FloatStorage)
self.assertIsInstance(y.cuda().float().cpu(), torch.FloatStorage)
self.assertIsInstance(y.cuda().float().cpu().int(), torch.IntStorage)
@unittest.skip("was disabled due to not enough memory, but actually it always fail")
def test_arithmetic_large_tensor(self):
x = torch.empty(2**30, device='cuda')
x.fill_(1)
self.assertEqual(x.sum(), 2**30)
x += 1
self.assertEqual(x.sum(), 2**31)
x.fill_(1)
x -= 0.5
self.assertEqual(x.sum(), 2**29)
x.fill_(1)
x *= 2
self.assertEqual(x.sum(), 2**31)
x.fill_(1)
x /= 2
self.assertEqual(x.sum(), 2**29)
def test_gather_bool(self):
t = torch.tensor([[False, True], [True, True]], device='cuda')
self.assertEqual(torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]], device='cuda')),
torch.tensor([[False, False], [True, True]], device='cuda'))
def test_torch_manual_seed_seeds_cuda_devices(self):
with freeze_rng_state():
x = torch.zeros(4, 4).float().cuda()
torch.manual_seed(2)
self.assertEqual(torch.cuda.initial_seed(), 2)
x.uniform_()
torch.manual_seed(2)
y = x.clone().uniform_()
self.assertEqual(x, y)
self.assertEqual(torch.cuda.initial_seed(), 2)
def test_manual_seed(self):
with freeze_rng_state():
x = torch.zeros(4, 4).float().cuda()
torch.cuda.manual_seed(2)
self.assertEqual(torch.cuda.initial_seed(), 2)
x.uniform_()
a = torch.bernoulli(torch.full_like(x, 0.5))
torch.cuda.manual_seed(2)
y = x.clone().uniform_()
b = torch.bernoulli(torch.full_like(x, 0.5))
self.assertEqual(x, y)
self.assertEqual(a, b)
self.assertEqual(torch.cuda.initial_seed(), 2)
def test_specify_improper_device_name(self):
import os
fname = "tempfile.pt"
try:
with self.assertRaisesRegex(RuntimeError, "Invalid device string"):
torch.save([torch.nn.Parameter(torch.randn(10, 10))], fname,
_use_new_zipfile_serialization=True)
torch.load(fname, 'cuda0')
finally:
if os.path.exists(fname):
os.remove(fname)
def test_get_device_index(self):
from torch.cuda._utils import _get_device_index
with self.assertRaisesRegex(RuntimeError, "Invalid device string"):
_get_device_index('cuda0', optional=True)
with self.assertRaisesRegex(ValueError, "Expected a cuda device"):
cpu_device = torch.device('cpu')
_get_device_index(cpu_device, optional=True)
def test_serialization_array_with_empty(self):
x = [torch.randn(4, 4).cuda(), torch.cuda.FloatTensor()]
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f)
for original, copy in zip(x, x_copy):
self.assertEqual(copy, original)
self.assertIs(type(copy), type(original))
self.assertEqual(copy.get_device(), original.get_device())
@skipCUDANonDefaultStreamIf(True)
def test_streams(self):
default_stream = torch.cuda.current_stream()
user_stream = torch.cuda.Stream()
self.assertEqual(torch.cuda.current_stream(), default_stream)
self.assertNotEqual(default_stream, user_stream)
self.assertEqual(default_stream.cuda_stream, 0)
self.assertNotEqual(user_stream.cuda_stream, 0)
with torch.cuda.stream(user_stream):
self.assertEqual(torch.cuda.current_stream(), user_stream)
self.assertTrue(user_stream.query())
tensor1 = torch.ByteTensor(5).pin_memory()
tensor2 = tensor1.cuda(non_blocking=True) + 1
default_stream.synchronize()
self.assertTrue(default_stream.query())
def test_stream_event_repr(self):
s = torch.cuda.current_stream()
self.assertTrue("torch.cuda.Stream" in s.__repr__())
e = torch.cuda.Event()
self.assertTrue("torch.cuda.Event" in e.__repr__())
s.record_event(e)
self.assertTrue("torch.cuda.Event" in e.__repr__())
def test_events(self):
stream = torch.cuda.current_stream()
event = torch.cuda.Event(enable_timing=True)
self.assertTrue(event.query())
start_event = torch.cuda.Event(enable_timing=True)
stream.record_event(start_event)
torch.cuda._sleep(int(50 * get_cycles_per_ms()))
stream.record_event(event)
self.assertFalse(event.query())
event.synchronize()
self.assertTrue(event.query())
self.assertGreater(start_event.elapsed_time(event), 0)
def test_record_stream(self):
cycles_per_ms = get_cycles_per_ms()
t = torch.FloatTensor([1, 2, 3, 4]).pin_memory()
result = torch.cuda.FloatTensor(t.size())
stream = torch.cuda.Stream()
ptr = [None]
# Performs the CPU->GPU copy in a background stream
def perform_copy():
with torch.cuda.stream(stream):
tmp = t.cuda(non_blocking=True)
ptr[0] = tmp.data_ptr()
torch.cuda.current_stream().wait_stream(stream)
tmp.record_stream(torch.cuda.current_stream())
torch.cuda._sleep(int(50 * cycles_per_ms)) # delay the copy
result.copy_(tmp)
perform_copy()
with torch.cuda.stream(stream):
tmp2 = torch.cuda.FloatTensor(t.size())
tmp2.zero_()
self.assertNotEqual(tmp2.data_ptr(), ptr[0], msg='allocation re-used to soon')
self.assertEqual(result.tolist(), [1, 2, 3, 4])
if not TEST_CUDAMALLOCASYNC:
# In the native allocator, we expect "tmp"'s side-stream-tagged block will be reused
# in that side stream after result.copy_(tmp) in the main stream finishes.
torch.cuda.current_stream().synchronize()
with torch.cuda.stream(stream):
tmp3 = torch.cuda.FloatTensor(t.size())
self.assertEqual(tmp3.data_ptr(), ptr[0], msg='allocation not re-used')
def test_record_stream_on_shifted_view(self):
# See issue #27366
# This test detects unexpected block reallocation. For reliable test,
# the stream to allocate tensors is isolated. The allocator will not
# reuse free blocks which were allocated from another stream.
stream_alloc = torch.cuda.Stream()
with torch.cuda.stream(stream_alloc):
base = torch.cuda.FloatTensor([10, 10])
# Record another stream on a shifted view tensor.
view = base[5:]
assert view.storage_offset() > 0
stream_record = torch.cuda.Stream()
with torch.cuda.stream(stream_record):
torch.cuda._sleep(int(50 * get_cycles_per_ms()))
view.record_stream(stream_record)
# Delete those tensors to make the block free soon.
data_ptr = base.data_ptr()
del base, view
# A new tensor should not be allocated to the block above.
stream_alloc.synchronize()
with torch.cuda.stream(stream_alloc):
try_realloc = torch.cuda.FloatTensor([10, 10])
self.assertNotEqual(try_realloc.data_ptr(), data_ptr)
def test_noncontiguous_pinned_memory(self):
# See issue #3266
x = torch.arange(0, 10).view((2, 5))
self.assertEqual(x.t(), x.t().pin_memory())
def test_caching_pinned_memory(self):
cycles_per_ms = get_cycles_per_ms()
# check that allocations are re-used after deletion
t = torch.FloatTensor([1]).pin_memory()
ptr = t.data_ptr()
del t
t = torch.FloatTensor([1]).pin_memory()
self.assertEqual(t.data_ptr(), ptr, msg='allocation not reused')
# check that the allocation is not re-used if it's in-use by a copy
gpu_tensor = torch.cuda.FloatTensor([0])
torch.cuda._sleep(int(1000 * cycles_per_ms)) # delay the copy by 1s
gpu_tensor.copy_(t, non_blocking=True)
del t
t = torch.FloatTensor([1]).pin_memory()
self.assertNotEqual(t.data_ptr(), ptr, msg='allocation re-used too soon')
self.assertEqual(list(gpu_tensor), [1])
def test_caching_allocator_record_stream_oom(self):
"""allocations delayed by a record_stream call should still be freed on
an out-of-memory in cuda_malloc_retry. see issue #19219"""
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
y = torch.zeros(40 * 1024 * 1024, device='cuda')
for _ in range(100):
x = torch.empty(40 * 1024 * 1024, device='cuda')
with torch.cuda.stream(stream):
y += x
# delays re-use of `x` until after all operations in `stream`
x.record_stream(stream)
del x
# we've made a mess by allocating up to the device capacity. free any
# cached blocks in case it affects future tests.
torch.cuda.empty_cache()
# Tests for historic illegal memory access, see #17040.
def test_reduction_gpu_memory_accessing(self):
x = torch.ones(512, 8, dtype=torch.float32, device='cuda')
torch.sum(x, 0)
def test_sum_fp16(self):
x = torch.zeros(10, device='cuda', dtype=torch.float16)
self.assertEqual(x.sum(), 0)
x = torch.ones(65504, device='cuda', dtype=torch.float16)
self.assertEqual(x.sum(), 65504)
self.assertEqual(x.sum(dtype=torch.float32), 65504)
x = torch.ones(65536, device='cuda', dtype=torch.float16)
self.assertEqual(x.sum(dtype=torch.float32), 65536)
a = torch.zeros(1203611).bernoulli_(0.0005)
x = a.to(device='cuda', dtype=torch.float16)
self.assertEqual(x.sum().item(), a.sum().item())
a = torch.zeros(100, 121, 80).bernoulli_(0.0005)
x = a.to(device='cuda', dtype=torch.float16)
self.assertEqual(x.sum((0, 2)).float().cpu(), a.sum((0, 2)))
def test_mean_fp16(self):
x = torch.ones(65536, device='cuda', dtype=torch.float16)
self.assertEqual(x.mean(), 1)
x = torch.ones(65536, device='cuda', dtype=torch.float16)
self.assertEqual(x.mean(dtype=torch.float32), 1)
def test_prod_large(self):
# tests global reduction (should_global_reduce = true) in case of non-zero identity element
x = torch.ones(240000, device='cuda', dtype=torch.float32)
self.assertEqual(x.prod(), 1)
# test for complex types. Note 240k is divisible by 4
for dtype in [torch.cfloat, torch.cdouble]:
x = torch.ones(240000, device='cuda', dtype=dtype) * (0 + 1j)
self.assertEqual(x.prod(), 1)
def test_multinomial_ext(self):
# Test two corner cases from older PyTorch (Issue #4858)
freqs = torch.cuda.FloatTensor([
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.03178183361887932, 0.027680952101945877, 0.033176131546497345,
0.046052902936935425, 0.07742464542388916, 0.11543981730937958,
0.14148041605949402, 0.15784293413162231, 0.13180233538150787,
0.08271478116512299, 0.049702685326337814, 0.027557924389839172,
0.018125897273421288, 0.011851548217236996, 0.010252203792333603,
0.007422595750540495, 0.005372154992073774, 0.0045109698548913,
0.0036087757907807827, 0.0035267581697553396, 0.0018864056328311563,
0.0024605290964245796, 0.0022964938543736935, 0.0018453967059031129,
0.0010662291897460818, 0.0009842115687206388, 0.00045109697384759784,
0.0007791675161570311, 0.00020504408166743815, 0.00020504408166743815,
0.00020504408166743815, 0.00012302644609007984, 0.0,
0.00012302644609007984, 4.100881778867915e-05, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0])
torch.cuda.manual_seed(11042)
sample = torch.multinomial(freqs, 1000, True)
self.assertNotEqual(freqs[sample].min(), 0)
p = torch.zeros(3421, 2, device="cuda", dtype=torch.float)
p[:, 1] = 1
torch.cuda.manual_seed(5214)
r = torch.multinomial(p, 1)
self.assertNotEqual(r.min().item(), 0)
# test corner case from Issue #13867
torch.cuda.manual_seed(33)
probs = torch.randn(1000000, device='cuda').clamp(min=0) * 3e-5
samples = probs.multinomial(1000000, replacement=True)
self.assertGreater(probs[samples].min().item(), 0)
def _spawn_test_multinomial_invalid_probs_cuda(self, probs):
import subprocess
try:
p = subprocess.Popen([sys.executable, '-c', f"""\
import sys
import torch
from torch import inf, nan
try:
with torch.random.fork_rng(devices=[0]):
torch.multinomial(torch.tensor({probs}).to('cuda'), 2, replacement=True)
torch.cuda.synchronize()
sys.exit(-1) # Should not be reached
except RuntimeError as e:
sys.exit(-2)
"""], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
out, err = p.communicate(timeout=10)
p.wait(timeout=10)
except subprocess.TimeoutExpired as e:
p.kill()
out, err = p.communicate()
expected_messages = [
'device-side assert triggered', # CUDA
'Assertion', # CUDA
'HSA_STATUS_ERROR_EXCEPTION', # ROCm
'Device-side assertion' # ROCm
]
self.assertTrue(any(msg in out or msg in err for msg in expected_messages))
@slowTest
@unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support device side asserts")
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
def test_multinomial_invalid_probs_cuda(self):
self._spawn_test_multinomial_invalid_probs_cuda([1., -1., 1.])
self._spawn_test_multinomial_invalid_probs_cuda([1., inf, 1.])
self._spawn_test_multinomial_invalid_probs_cuda([1., -inf, 1.])
self._spawn_test_multinomial_invalid_probs_cuda([1., 1., nan])
@staticmethod
def _mute_init():
os.dup2(os.open(os.devnull, os.O_WRONLY), sys.stderr.fileno())
def _spawn_method(self, method, arg):
ctx = torch.multiprocessing.get_context("spawn")
with ctx.Pool(1, initializer=self._mute_init) as pool:
errors = pool.map(method, [arg])
for e in errors:
if 'device-side assert triggered' not in str(e):
self.fail(e)
@staticmethod
def _test_index_bounds_cuda(idx):
x = torch.arange(10, device="cuda")
try:
y = x[torch.tensor([idx])]
return f"x[torch.tensor([{idx})]={y}"
except RuntimeError as err:
return err
@slowTest
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@skipIfRocm
def test_index_out_of_bounds_exception_cuda(self):
test_method = TestCuda._test_index_bounds_cuda
# Test in-bound access works fine
self.assertEqual(test_method(1), "x[torch.tensor([1)]=tensor([1], device='cuda:0')")
# Test that indexing out of bounds causes assert
self._spawn_method(test_method, 11)
@slowTest
@unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory")
def test_huge_index(self):
src = torch.empty(15000000, 45, device='cuda', dtype=torch.long).random_(0, 2**22)
idx = torch.randperm(src.shape[0], device='cuda')
res = src[idx]
res_cpu = src.cpu()[idx.cpu()]
self.assertEqual(res.cpu(), res_cpu)
def test_min_max_inits(self):
# Testing if THC_reduceAll received the correct index initialization.
# This affects the result of THC_reduceAll operations at extreme values
x = torch.cuda.ByteTensor([0])
y = torch.cuda.ByteTensor([255])
expected = torch.cuda.LongTensor([0])[0]
_, v = x.max(dim=0)
self.assertEqual(v, expected)
_, v = y.min(dim=0)
self.assertEqual(v, expected)
def test_nvtx(self):
# Just making sure we can see the symbols
torch.cuda.nvtx.range_push("foo")
torch.cuda.nvtx.mark("bar")
torch.cuda.nvtx.range_pop()
range_handle = torch.cuda.nvtx.range_start("range_start")
torch.cuda.nvtx.range_end(range_handle)
def test_bincount_ext(self):
# ensure CUDA code coverage
input_size = (100000,)
w = torch.randn(input_size, dtype=torch.double, device='cuda')
w_cpu = w.cpu()
# test shared memory impl
t = torch.randint(50, input_size, dtype=torch.int8, device='cuda')
self.assertEqual(t.cpu().bincount(), t.bincount())
self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w))
# test global memory impl
# see `CUDAHistogramMemoryType` in SummaryOps.cu
# 50000 * sizeof(int64_t) == 390 KiB, which should exceed smem of any known GPU
t = torch.randint(50000, input_size, dtype=torch.int64, device='cuda')
self.assertEqual(t.cpu().bincount(), t.bincount())
self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w))
t = torch.zeros([10], dtype=torch.int32, device='cuda')
# 35488 * 65536 as int32 would cause overflow to negative value
# giving negative bin offset
t[0] = 35488
counted = t.bincount(minlength=65536)
self.assertEqual(torch.sum(counted), 10)
def test_tiny_half_norm_(self):
a = torch.arange(25).cuda().float()
a /= 100000000
b = a.half()
self.assertGreater(b.norm().item(), 0)
def test_norm_type_conversion(self):
a = torch.ones(65536).cuda().half()
self.assertEqual(a.norm(p=0, dtype=torch.float32), 65536)
def test_cuda_memory_leak_detection_propagates_errors(self):
with self.assertRaisesRegex(RuntimeError, r"The size of tensor a \(3\) must match"):
with self.assertLeaksNoCudaTensors():
x = torch.randn(3, 1, device='cuda')
y = torch.randn(2, 1, device='cuda')
z = x + y
@unittest.skipIf(not TEST_MEDIUM_TENSOR, "not enough memory")
def test_cuda_kernel_loop_overflow(self):
# Issue #24309: In extreme cases, the loop variable could overflow and continue
# the kernel loop with a negative index, causing a RuntimeError (invalid write):
x = torch.randn(1, 1, 1, 2**30 + 1, dtype=torch.float16, device="cuda")
expected = x[0, 0, 0, 2**30]
y = torch.nn.functional.avg_pool2d(x, kernel_size=1)
torch.cuda.synchronize()
self.assertEqual(y[0, 0, 0, 2**30], expected)
@unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory")
@gcIfJetson
def test_cuda_kernel_loop_overflow_large(self):
# Make sure input.numel() > INT_MAX is handled:
x = torch.randn(1, 1, 1, 2**31, dtype=torch.float16, device="cuda")
with self.assertRaisesRegex(RuntimeError, "integer out of range"):
y = torch.nn.functional.avg_pool2d(x, kernel_size=1)
# Issue #24309: In extreme cases, the loop variable could overflow and continue
# the kernel loop with a negative index, causing a RuntimeError (invalid write):
x = torch.randn(1, 1, 1, 2**31 - 1, dtype=torch.float16, device="cuda")
expected = x[0, 0, 0, 2**31 - 2]
y = torch.nn.functional.avg_pool2d(x, kernel_size=1)
torch.cuda.synchronize()
self.assertEqual(y[0, 0, 0, 2**31 - 2], expected)
# this might create a reference cycle on self...
def _make_multiply_in_stream(self):
class MultiplyInStream(torch.autograd.Function):
@staticmethod
def forward(ctx, x, val):
ctx.val = val
ctx.stream = torch.cuda.current_stream()
return x * val
@staticmethod
def backward(ctx, grad):
self.assertEqual(torch.cuda.current_stream(), ctx.stream)
# delays the operation in the the background stream
torch.cuda._sleep(1000 * 5000)
return grad * ctx.val, None
return MultiplyInStream
@skipCUDANonDefaultStreamIf(True)
def test_streaming_backwards_sync(self):
default_stream = torch.cuda.current_stream()
stream = torch.cuda.Stream()
MultiplyInStream = self._make_multiply_in_stream()
# Tests using grads outside the backward() stream context
# See "Stream semantics of backward passes" on https://pytorch.org/docs/stable/notes/cuda.html
x = torch.randn(5, 5, device='cuda', requires_grad=True)
with torch.cuda.stream(stream):
stream.wait_stream(default_stream)
output = MultiplyInStream.apply(x, 2)
output.sum().backward()
# sync needed
default_stream.wait_stream(stream)
self.assertEqual(x.grad, torch.ones_like(x) * 2)
self.assertEqual(torch.cuda.current_stream(), default_stream)
# Tests that using grads in the same stream context as backward()
# is safe regardless what streams bwd ops ran on
bwd_ambient_stream = torch.cuda.Stream()
x = torch.randn(5, 5, device='cuda', requires_grad=True)
with torch.cuda.stream(stream):
stream.wait_stream(default_stream)
output = MultiplyInStream.apply(x, 3)
with torch.cuda.stream(bwd_ambient_stream):
bwd_ambient_stream.wait_stream(stream)
output.sum().backward()
# x was first used on "stream" so its AccumulateGrad leaf should run on "stream".
# The end of backward() should have synced "bwd_ambient_stream" with "stream"
# so it should be safe to use x.grad here without any syncs.
self.assertEqual(x.grad, torch.ones_like(x) * 3)
self.assertEqual(torch.cuda.current_stream(), bwd_ambient_stream)
# Skip the test for ROCm as per https://github.com/pytorch/pytorch/issues/53190
@skipIfRocm
def test_streaming_backwards_multiple_streams(self):
MultiplyInStream = self._make_multiply_in_stream()
class StreamModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.event = torch.cuda.Event()
self.stream0 = torch.cuda.Stream()
self.stream1 = torch.cuda.Stream()
def forward(self, x, x_first_use_on_ambient):
if x_first_use_on_ambient:
x0 = x.clone()
self.stream0.wait_stream(torch.cuda.current_stream())
self.stream1.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(self.stream0):
if not x_first_use_on_ambient:
x0 = x.clone()
y0 = MultiplyInStream.apply(x0, 2)
self.event.record(stream=torch.cuda.current_stream())
with torch.cuda.stream(self.stream1):
y1 = MultiplyInStream.apply(x, 3)
self.stream1.wait_event(self.event)
return y0 + y1
stream = torch.cuda.Stream()
for x_first_use_on_ambient in (True, False):
# the out_of_place=False, iters=1 case stresses if proper syncs are inserted
# when grads are initially None and stolen by backward ops.
for out_of_place, iters in ((True, 1),
(False, 1),
(False, 5)):
with torch.cuda.stream(stream):
x = torch.randn(5, 5, device='cuda', requires_grad=True)
model = StreamModel().cuda()
x.register_hook(lambda grad: self.assertEqual(torch.cuda.current_stream(),
stream if x_first_use_on_ambient else model.stream0))
for p in model.parameters():
self.assertTrue(p.grad is None)
for i in range(iters):
loss = model(x, x_first_use_on_ambient).sum()
if out_of_place:
x_grad = torch.autograd.grad((loss,), (x,))[0]
else:
loss.backward()
# See "Stream semantics of backward passes" on https://pytorch.org/docs/stable/notes/cuda.html
torch.cuda.current_stream().wait_stream(stream)
if out_of_place:
self.assertEqual(x_grad, torch.ones_like(x) * 5 * iters)
else:
self.assertEqual(x.grad, torch.ones_like(x) * 5 * iters)
def test_streaming_backwards_sync_graph_root(self):
# This function tests if bwd ops running on a side stream properly sync with the GraphRoot.
# The potential bug it targets is a race condition. The test uses multiple trials and
# torch.cuda._sleep such that if the race condition exists, the test will almost certainly fail,
# but there's a chance it may spuriously pass. Passing does not guarantee the backend is bug-free,
# but failure does guarantee there is a bug.
fwd_bwd_op_stream = torch.cuda.Stream()
bwd_ambient_stream = torch.cuda.Stream()
# We need these streams to be different otherwise the test is meaningless.
self.assertTrue(fwd_bwd_op_stream != bwd_ambient_stream)
size = int(1e3)
a = torch.full((size,), 2.0, device="cuda", requires_grad=True)
b = torch.full((size,), 3.0, device="cuda", requires_grad=True)
# I don't think we need any manual record_streams below.
# a and b remain in scope for the entire test.
# c and grad remain in scope for each iteration, and there's a full sync between iterations.
for trial in range(5):
torch.cuda.synchronize()
a.grad = b.grad = None
with torch.cuda.stream(fwd_bwd_op_stream):
c = a * b
with torch.cuda.stream(bwd_ambient_stream):
torch.cuda.synchronize()
# Long-running dummy kernel on bwd_ambient_stream delays filling of grad
torch.cuda._sleep(int(50 * get_cycles_per_ms()))
# Fills grad on bwd_ambient_stream
grad = torch.full((size,), float(trial + 1), device="cuda")
# Bwd ops still run on fwd_bwd_ops_stream, so the following will likely fail if
# bwd ops don't sync with bwd_ambient_stream before consuming grad.
torch.autograd.backward(tensors=c, grad_tensors=grad)
# See https://github.com/pytorch/pytorch/issues/47028
# assertEquals below run on bwd_ambient_stream, so this test may also fail
# if backward() fails to sync with bwd_ambient_stream at the end.
# Synchronizing here works around the issue until a proper fix can be made.
torch.cuda.synchronize()
with torch.no_grad():
self.assertEqual(a.grad, grad * b)
self.assertEqual(b.grad, grad * a)