-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathanalogy_creator.py
75 lines (61 loc) · 3.32 KB
/
analogy_creator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import numpy as np
from PIL import Image
from ddim_invertor import DDIMInvertor
import utils
class AnalogyCreator():
def __init__(self, config, ddim_sampler, inversion_subfolder, token_subfolder, output_root, data_path) -> None:
self.config = config
self.ddim_sampler = ddim_sampler
self.subfolder = inversion_subfolder
self.token_subfolder = token_subfolder
self.output_root = output_root
self.uc = self.ddim_sampler.model.get_learned_conditioning([''])
self.data_path = data_path
def fetch_cond_matrix(self, file_id):
cond_out = utils.load_estimated_cond(file_id, token_subfolder=self.token_subfolder)
cond_out = self.ddim_sampler.model.cond_stage_model.transformer(inputs_embeds = cond_out.unsqueeze(0))['last_hidden_state']
return cond_out.to(self.config.device)
def __load_B_noise(self, imB):
fileid_B = utils.extract_file_id_from_path(imB)
_,_,_, resB = utils.load_inversion_result_dict(fileid_B, self.subfolder, return_result_dict=True)
return resB['estimated_input_noise']
def make_analogy(self, triplet, steps, uc_scales, analogy_func = None, **analogy_func_kwargs):
print(f'Make analogy inputs: {triplet}, {uc_scales}, {steps}')
triplet_code = '_'.join([utils.extract_file_id_from_path(t) for t in triplet])
noise = self.__load_B_noise(triplet[-1])
cA = self.fetch_cond_matrix(utils.extract_file_id_from_path(triplet[0]))
cAprime = self.fetch_cond_matrix(utils.extract_file_id_from_path(triplet[1]))
cB = self.fetch_cond_matrix(utils.extract_file_id_from_path(triplet[2]))
self.make_analogy_from_args(triplet_code, cA, cAprime, cB, noise, steps, uc_scales, analogy_func, **analogy_func_kwargs)
def make_analogy_from_args(self, triplet_code, cA, cAprime, cB, noise, steps, uc_scales, analogy_func = None, **analogy_func_kwargs):
os.makedirs(os.path.join(self.output_root, triplet_code), exist_ok=True)
os.makedirs(os.path.join(self.output_root,'grids'), exist_ok=True)
if analogy_func is None:
analogy_func = lambda cA, cAprime, cB, st: cB + st * (cAprime - cA)
rows = []
for sc in uc_scales:
cols = []
for st in steps:
analogy_res,_ = self.ddim_sampler.sample(
self.config.ddim_steps,
1,
self.config.shape,
conditioning = analogy_func(cA, cAprime, cB, st, **analogy_func_kwargs),
eta=self.config.ddim_eta,
x_T=noise,
unconditional_guidance_scale=sc,
unconditional_conditioning=self.uc,
)
img = utils.save_latent_as_image(
self.ddim_sampler.model,
analogy_res,
os.path.join(self.output_root, triplet_code, f'analogy_sc={sc}_shift_strength={st}.jpg'),
return_pil=True
)
cols.append(np.array(img))
rows.append(np.concatenate(cols, axis = 1))
grid = np.concatenate(rows, axis = 0)
Image.fromarray(grid).save(os.path.join(self.output_root,
'grids',
f'{triplet_code}_analogy_grid.jpg' ))