-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathfunctions.py
162 lines (145 loc) · 6.21 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import streamlit as st
import numpy as np
@st.cache
def calc_moving_average(data, size):
df = data.copy()
df['sma'] = df['Close'].rolling(int(size)).mean()
df['ema'] = df['Close'].ewm(span=size, min_periods=size).mean()
df.dropna(inplace=True)
return df
#Function for Moving Average Convergence Divergence
@st.cache
def calc_macd(data):
df = data.copy()
df['ema12'] = df['Close'].ewm(span=12, min_periods=12).mean()
df['ema26'] = df['Close'].ewm(span=26, min_periods=26).mean()
df['macd'] = df['ema12'] - df['ema26']
df['signal'] = df['macd'].ewm(span=9, min_periods=9).mean()
df.dropna(inplace=True)
return df
#function for bollinger Bands
@st.cache
def calc_bollinger(data, size):
df = data.copy()
df['sma'] = df['Close'].rolling(int(size)).mean()
df["bolu"] = df["sma"] + 2 * df['Adj Close'].rolling(int(size)).std(ddof=0)
df["bold"] = df["sma"] - 2 * df['Adj Close'].rolling(int(size)).std(ddof=0)
df["width"] = df["bolu"] - df["bold"]
df.dropna(inplace=True)
return df
#function for ATR-Average True Range
@st.cache
def ATR(data, n):
"function to calculate True Range and Average True Range"
df = data.copy()
df['H-L'] = abs(df['High'] - df['Low'])
df['H-PC'] = abs(df['High'] - df['Adj Close'].shift(1))
df['L-PC'] = abs(df['Low'] - df['Adj Close'].shift(1))
df['TR'] = df[['H-L', 'H-PC', 'L-PC']].max(axis=1, skipna=False)
df['ATR'] = df['TR'].rolling(n).mean()
df2 = df.drop(['H-L', 'H-PC', 'L-PC'], axis=1)
return df2
#function to calculate RSI
@st.cache
def RSI(data, n):
"function to calculate RSI"
df = data.copy()
df['delta'] = df['Adj Close'] - df['Adj Close'].shift(1)
df['gain'] = np.where(df['delta'] >= 0, df['delta'], 0)
df['loss'] = np.where(df['delta'] < 0, abs(df['delta']), 0)
avg_gain = []
avg_loss = []
gain = df['gain'].tolist()
loss = df['loss'].tolist()
for i in range(len(df)):
if i < n:
avg_gain.append(np.NaN)
avg_loss.append(np.NaN)
elif i == n:
avg_gain.append(df['gain'].rolling(n).mean().tolist()[n])
avg_loss.append(df['loss'].rolling(n).mean().tolist()[n])
elif i > n:
avg_gain.append(((n - 1) * avg_gain[i - 1] + gain[i]) / n)
avg_loss.append(((n - 1) * avg_loss[i - 1] + loss[i]) / n)
df['avg_gain'] = np.array(avg_gain)
df['avg_loss'] = np.array(avg_loss)
df['RS'] = df['avg_gain'] / df['avg_loss']
df['RSI'] = 100 - (100 / (1 + df['RS']))
return df
#Function to calculate ADX
@st.cache
def ADX(data, n):
"function to calculate ADX"
df2 = data.copy()
df2['TR'] = ATR(df2, n)[
'TR'] # the period parameter of ATR function does not matter because period does not influence TR calculation
df2['DMplus'] = np.where((df2['High'] - df2['High'].shift(1)) > (df2['Low'].shift(1) - df2['Low']),
df2['High'] - df2['High'].shift(1), 0)
df2['DMplus'] = np.where(df2['DMplus'] < 0, 0, df2['DMplus'])
df2['DMminus'] = np.where((df2['Low'].shift(1) - df2['Low']) > (df2['High'] - df2['High'].shift(1)),
df2['Low'].shift(1) - df2['Low'], 0)
df2['DMminus'] = np.where(df2['DMminus'] < 0, 0, df2['DMminus'])
TRn = []
DMplusN = []
DMminusN = []
TR = df2['TR'].tolist()
DMplus = df2['DMplus'].tolist()
DMminus = df2['DMminus'].tolist()
for i in range(len(df2)):
if i < n:
TRn.append(np.NaN)
DMplusN.append(np.NaN)
DMminusN.append(np.NaN)
elif i == n:
TRn.append(df2['TR'].rolling(n).sum().tolist()[n])
DMplusN.append(df2['DMplus'].rolling(n).sum().tolist()[n])
DMminusN.append(df2['DMminus'].rolling(n).sum().tolist()[n])
elif i > n:
TRn.append(TRn[i - 1] - (TRn[i - 1] / n) + TR[i])
DMplusN.append(DMplusN[i - 1] - (DMplusN[i - 1] / n) + DMplus[i])
DMminusN.append(DMminusN[i - 1] - (DMminusN[i - 1] / n) + DMminus[i])
df2['TRn'] = np.array(TRn)
df2['DMplusN'] = np.array(DMplusN)
df2['DMminusN'] = np.array(DMminusN)
df2['DIplusN'] = 100 * (df2['DMplusN'] / df2['TRn'])
df2['DIminusN'] = 100 * (df2['DMminusN'] / df2['TRn'])
df2['DIdiff'] = abs(df2['DIplusN'] - df2['DIminusN'])
df2['DIsum'] = df2['DIplusN'] + df2['DIminusN']
df2['DX'] = 100 * (df2['DIdiff'] / df2['DIsum'])
ADX = []
DX = df2['DX'].tolist()
for j in range(len(df2)):
if j < 2 * n - 1:
ADX.append(np.NaN)
elif j == 2 * n - 1:
ADX.append(df2['DX'][j - n + 1:j + 1].mean())
elif j > 2 * n - 1:
ADX.append(((n - 1) * ADX[j - 1] + DX[j]) / n)
df2['ADX'] = np.array(ADX)
return df2['ADX']
#function to calculate OBV
@st.cache
def OBV(DF):
"""function to calculate On Balance Volume"""
df = DF.copy()
df['daily_ret'] = df['Adj Close'].pct_change()
df['direction'] = np.where(df['daily_ret'] >= 0, 1, -1)
df['direction'][0] = 0
df['vol_adj'] = df['Volume'] * df['direction']
df['obv'] = df['vol_adj'].cumsum()
return df['obv']
def is_consolidating(df, percentage=10):
recent_candlesticks = df[-15:]
max_close = recent_candlesticks['Close'].max()
min_close = recent_candlesticks['Close'].min()
threshold = 1 - (percentage / 100)
if min_close > (max_close * threshold):
return 'YES'
return 'NO'
def is_breaking_out(df, percentage=10):
last_close = df[-1:]['Close'].values[0]
if is_consolidating(df[:-1], percentage=percentage):
recent_closes = df[-16:-1]
if last_close > recent_closes['Close'].max():
return 'YES'
return 'NO'