-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathcryptonite_hash.c
367 lines (316 loc) · 13.6 KB
/
cryptonite_hash.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// Copyright (c) 2012-2013 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// Modified for CPUminer by Lucas Jones
// Modified for Sumo Easy Miner by Bill Aue (Sumokoin.org)
#include "miner.h"
#include "compat.h"
#include "cryptonite_hash.h"
#if defined(__MINGW32__)
#if defined(__MINGW64__)
#define MINGW_x64 (1) // MINGW 64-bit
#else
#define MINGW_x86 (1) // MINGW 32-bit
#endif
#endif
#if defined(__arm__) || defined(_MSC_VER) || defined(MINGW_x86)
#ifndef NOASM
#define NOASM
#endif
#endif
#include "crypto/oaes_lib.h"
#include "crypto/c_keccak.h"
#include "crypto/c_groestl.h"
#include "crypto/c_blake256.h"
#include "crypto/c_jh.h"
#include "crypto/c_skein.h"
#include "crypto/int-util.h"
#include "crypto/hash-ops.h"
#if USE_INT128
#if __GNUC__ == 4 && __GNUC_MINOR__ >= 4 && __GNUC_MINOR__ < 6
typedef unsigned int uint128_t __attribute__ ((__mode__ (TI)));
#elif defined (_MSC_VER) || defined(MINGW_x86)
#undef USE_INT128
#define USE_INT128 (0)
#else
typedef __uint128_t uint128_t;
#endif
#endif
#define MEMORY (1 << 21) /* 2 MiB */
#define ITER (1 << 20)
// Lite
//#define MEMORY (1 << 20)
//#define ITER (1 << 19)
#define AES_BLOCK_SIZE 16
#define AES_KEY_SIZE 32 /*16*/
#define INIT_SIZE_BLK 8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
#pragma pack(push, 1)
union cn_slow_hash_state {
union hash_state hs;
struct {
uint8_t k[64];
uint8_t init[INIT_SIZE_BYTE];
};
};
#pragma pack(pop)
static void do_blake_hash(const void* input, size_t len, char* output) {
blake256_hash((uint8_t*)output, input, len);
}
void do_groestl_hash(const void* input, size_t len, char* output) {
groestl(input, len * 8, (uint8_t*)output);
}
static void do_jh_hash(const void* input, size_t len, char* output) {
int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output);
assert(likely(SUCCESS == r));
}
static void do_skein_hash(const void* input, size_t len, char* output) {
int r = skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output);
assert(likely(SKEIN_SUCCESS == r));
}
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
#if !defined(_MSC_VER) && !defined(NOASM)
extern int fast_aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int fast_aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
#else
#define fast_aesb_single_round aesb_single_round
#define fast_aesb_pseudo_round_mut aesb_pseudo_round_mut
#endif
#if defined(NOASM)
static uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi) {
// multiplier = ab = a * 2^32 + b
// multiplicand = cd = c * 2^32 + d
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
uint64_t a = hi_dword(multiplier);
uint64_t b = lo_dword(multiplier);
uint64_t c = hi_dword(multiplicand);
uint64_t d = lo_dword(multiplicand);
uint64_t ac = a * c;
uint64_t ad = a * d;
uint64_t bc = b * c;
uint64_t bd = b * d;
uint64_t adbc = ad + bc;
uint64_t adbc_carry = adbc < ad ? 1 : 0;
// multiplier * multiplicand = product_hi * 2^64 + product_lo
uint64_t product_lo = bd + (adbc << 32);
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
*product_hi = ac + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
assert(ac <= *product_hi);
return product_lo;
}
#else
extern uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi);
#endif
static void (* const extra_hashes[4])(const void *, size_t, char *) = {
do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash
};
// Credit to Wolf for optimizing this function
static inline size_t e2i(const uint8_t* a) {
return ((uint32_t *)a)[0] & 0x1FFFF0;
}
static inline void mul_sum_xor_dst(const uint8_t* a, uint8_t* c, uint8_t* dst) {
uint64_t hi, lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi) + ((uint64_t*) c)[1];
hi += ((uint64_t*) c)[0];
((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi;
((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo;
((uint64_t*) dst)[0] = hi;
((uint64_t*) dst)[1] = lo;
}
static inline void xor_blocks(uint8_t* a, const uint8_t* b) {
#if USE_INT128
*((uint128_t*) a) ^= *((uint128_t*) b);
#else
((uint64_t*) a)[0] ^= ((uint64_t*) b)[0];
((uint64_t*) a)[1] ^= ((uint64_t*) b)[1];
#endif
}
static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) {
#if USE_INT128
*((uint128_t*) dst) = *((uint128_t*) a) ^ *((uint128_t*) b);
#else
((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0];
((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1];
#endif
}
struct cryptonight_ctx {
uint8_t _ALIGN(16) long_state[MEMORY];
union cn_slow_hash_state state;
uint8_t _ALIGN(16) text[INIT_SIZE_BYTE];
uint8_t _ALIGN(16) a[AES_BLOCK_SIZE];
uint8_t _ALIGN(16) b[AES_BLOCK_SIZE];
uint8_t _ALIGN(16) c[AES_BLOCK_SIZE];
oaes_ctx* aes_ctx;
};
void cryptonight_hash_ctx(void* output, const void* input, int len, struct cryptonight_ctx* ctx) {
hash_process(&ctx->state.hs, (const uint8_t*) input, len);
ctx->aes_ctx = (oaes_ctx*) oaes_alloc();
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data);
memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE);
}
xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a);
xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b);
for (i = 0; likely(i < ITER / 4 ); ++i) {
/* Dependency chain: address -> read value ------+
* written value <-+ hard function (AES or MUL) <+
* next address <-+
*/
/* Iteration 1 */
j = e2i(ctx->a);
aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a);
xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]);
/* Iteration 2 */
mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]);
/* Iteration 3 */
j = e2i(ctx->a);
aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a);
xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]);
/* Iteration 4 */
mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
hash_permutation(&ctx->state.hs);
/*memcpy(hash, &state, 32);*/
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
oaes_free((OAES_CTX **) &ctx->aes_ctx);
}
void cryptonight_hash_ctx_aes_ni(void* output, const void* input, int len, struct cryptonight_ctx* ctx) {
hash_process(&ctx->state.hs, (const uint8_t*)input, len);
ctx->aes_ctx = (oaes_ctx*) oaes_alloc();
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data);
memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE);
}
xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a);
xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b);
for (i = 0; likely(i < ITER / 4 ); ++i) {
/* Dependency chain: address -> read value ------+
* written value <-+ hard function (AES or MUL) <+
* next address <-+
*/
/* Iteration 1 */
j = e2i(ctx->a);
fast_aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a);
xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]);
/* Iteration 2 */
mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]);
/* Iteration 3 */
j = e2i(ctx->a);
fast_aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a);
xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]);
/* Iteration 4 */
mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
hash_permutation(&ctx->state.hs);
/*memcpy(hash, &state, 32);*/
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
oaes_free((OAES_CTX **) &ctx->aes_ctx);
}
//bool aes_ni_supported = false;
void cryptonight_hash(void* output, const void* input, const int aes_ni_supported) {
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
if (aes_ni_supported) {
cryptonight_hash_ctx_aes_ni(output, input, 76, ctx);
}
else
{
cryptonight_hash_ctx(output, input, 76, ctx);
}
free(ctx);
}
int scanhash_cryptonight(char* pdata, uint32_t target,
uint32_t max_nonce, uint64_t* hashes_done)
{
uint32_t *nonceptr = (uint32_t*)(((char*)pdata) + 39);
uint32_t n = *nonceptr - 1;
const uint32_t first_nonce = n + 1;
uint32_t _ALIGN(32) hash[HASH_SIZE / 4];
//printf("target %u\n", target);
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
if (has_aes_ni()) {
do {
*nonceptr = ++n;
cryptonight_hash_ctx_aes_ni(hash, pdata, 76, ctx);
if (unlikely(hash[7] < target)) {
*hashes_done = n - first_nonce + 1;
free(ctx);
return true;
}
} while (likely((n <= max_nonce)));
} else {
do {
*nonceptr = ++n;
cryptonight_hash_ctx(hash, pdata, 76, ctx);
if (unlikely(hash[7] < target)) {
*hashes_done = n - first_nonce + 1;
free(ctx);
return true;
}
} while (likely((n <= max_nonce)));
}
free(ctx);
*hashes_done = n - first_nonce + 1;
return 0;
}