-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
executable file
·205 lines (165 loc) · 10.9 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
from torch.utils.data import DataLoader, Subset
from torchvision import datasets, transforms
import os
normalize_imagenet = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
transform_imagenet_train = transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize_imagenet,])
transform_imagenet_test = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize_imagenet,])
def get_dataloaders(args, adversarial = False, no_transform = False, return_datasets = False):
# attacked_model is used for returning the adversarial images dataset. Which model was attacked to generate the new images
if not adversarial:
if args.dataset.lower() == "cifar10":
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Lambda(lambda x: x.float())])
transform_test = transforms.Compose([transforms.ToTensor(),transforms.Lambda(lambda x: x.float())])
transform_train = transform_test if no_transform else transform_train
d_train = datasets.CIFAR10("../data", train=True, download=True, transform=transform_train)
d_test = datasets.CIFAR10("../data", train=False, download=True, transform=transform_test)
train_loader = DataLoader(d_train, batch_size = args.batch_size, shuffle= not no_transform, num_workers=16)
test_loader = DataLoader(d_test, batch_size = args.batch_size, shuffle=False, num_workers=16)
elif args.dataset.lower() == "mnist":
d_train = datasets.MNIST("../data", train=True, download=True, transform=transforms.ToTensor())
d_test = datasets.MNIST("../data", train=False, download=True, transform=transforms.ToTensor())
train_loader = DataLoader(d_train, batch_size = args.batch_size, shuffle= not no_transform)
test_loader = DataLoader(d_test, batch_size = args.batch_size, shuffle=False)
elif args.dataset.lower() == "imagenette":
transform_train = transforms.Compose([transforms.Resize((128,128)),transforms.RandomCrop(128, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),normalize_imagenet
])
transform_test = transforms.Compose([transforms.Resize((128,128)), transforms.ToTensor(),normalize_imagenet])
root = "/home/pratyus2/.fastai/data/imagenette2-160"
traindir = os.path.join(root, 'train')
valdir = os.path.join(root, 'val')
train_dataset = datasets.ImageFolder(traindir,transform_train)
val_dataset = datasets.ImageFolder(valdir,transform_test)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,num_workers=4, pin_memory=True, shuffle = True)#sampler=train_sampler
test_loader = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=4, pin_memory=True, shuffle=False)#sampler=val_sampler,
elif args.dataset.lower() == "imagenet":
allreduce_batch_size = args.batch_size
stride = 10
root = "/home/pratyus2/scratch/data/imagenet"
traindir = os.path.join(root, 'train')
valdir = os.path.join(root, 'val')
train_dataset = StridedImageFolder(traindir,transform_imagenet_train,stride=stride)
val_dataset = StridedImageFolder(valdir,transform_imagenet_test,stride=stride)
# train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
# val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = DataLoader(train_dataset, batch_size=allreduce_batch_size,num_workers=8, pin_memory=True, shuffle = True)#sampler=train_sampler
test_loader = DataLoader(val_dataset, batch_size=allreduce_batch_size, num_workers=8, pin_memory=True, shuffle=False)#sampler=val_sampler,
else:
print ("Adversarial Perturbation Label")
if args.dataset.lower() in ["cifar10","imagenet","imagenette"]:
root = f"../data/{args.dataset.upper()}_ADVsmallstep_apgd"
root = f"../data/{args.dataset.upper()}_ADVsmallstep"
root = f"../data/{args.dataset.upper()}_ADV"
# root = f"/home/pratyus2/scratch/projects/multi_adv/data/{args.dataset.upper()}_ADV"
dim = {"cifar10":32, "imagenette":128, "imagenet":224}[args.dataset.lower()]
transform_train = transforms.Compose([transforms.ToPILImage(),
transforms.RandomCrop(dim, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),normalize_imagenet,
transforms.Lambda(lambda x: x.float())])
# transform_test = transforms.Compose([transforms.ToPILImage(),transforms.ToTensor(),transforms.Lambda(lambda x: x.float())])
transform_train = transforms.ToTensor() if args.dataset.lower() == "imagenet" else transform_train
transform_test = transforms.ToTensor() if args.dataset.lower() == "imagenet" else normalize_imagenet
dataset_type = AdversarialDatasetFolder if args.dataset.lower() == "imagenet" else AdversarialDataset
d_train = dataset_type(root, args.attack_types, args.attacked_model_list, train = True, transform = transform_train, num_base = args.num_base)
# train_indices = torch.randperm(len(d_train))[:3000]
# d_train = Subset(d_train, train_indices)
train_loader = DataLoader(dataset=d_train, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True)
d_test = dataset_type(root, args.attack_types, args.attacked_model_list, train = False, transform = transform_test, num_base = args.num_base)
test_loader = DataLoader(dataset=d_test, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True)
elif args.dataset.lower() == "mnist":
root = "../data/MNIST_ADV"
d_train = AdversarialDataset(root, args.attack_types, args.attacked_model_list, train = True, transform = None, num_base = args.num_base)
train_loader = DataLoader(dataset=d_train, batch_size=args.batch_size, shuffle=True)
d_test = AdversarialDataset(root, args.attack_types, args.attacked_model_list, train = False, transform = None, num_base = args.num_base)
test_loader = DataLoader(dataset=d_test, batch_size=args.batch_size, shuffle=False)
if return_datasets:
return train_loader, test_loader, d_train, d_test
return train_loader, test_loader
class AdversarialDatasetFolder(datasets.ImageFolder):
def __init__(self, root, attack_types, attacked_model_list, train = True, transform = None, num_base = 3, *args, **kwargs):
self.new_root = tempfile.mkdtemp()
train = "train" if train else "test"
classes = []
new_classes = []
idx_to_class = {}
for i, attack in enumerate(attack_types):
for model_name in attacked_model_list:
cls = f"{attack}/{model_name}_x/{train}"
classes.append(cls)
new_cls = "_".join(cls.split("/"))
new_classes.append(new_cls)
idx_to_class[new_cls] = i
classes.sort()
new_classes.sort()
idx_to_label={}
for i,cls in enumerate(new_classes):
idx_to_label[i] = idx_to_class[cls]
for cls in classes:
new_cls = "_".join(cls.split("/"))
os.symlink(os.path.join(root, cls), os.path.join(self.new_root, new_cls), target_is_directory = True)
def target_transform(label):
label = idx_to_label[label]
if num_base == 2: label = min(label,1)
return label
super().__init__(self.new_root, target_transform = target_transform, transform = transform)
def __del__(self):
shutil.rmtree(self.new_root)
class AdversarialDataset(torch.utils.data.Dataset):
def __init__(self, root, attack_types, attacked_model_list, train = True, transform = None, num_base = 3):
train = "train" if train else "test"
x_list = []; y_list = []
for class_label, attack in enumerate(attack_types):
for model_name in attacked_model_list:
try:
x_list.append(torch.load(f"{root}/{attack}/{model_name}_x_{train}.pt"))
y_list.append(torch.load(f"{root}/{attack}/{model_name}_y_{train}.pt").long()*0 + class_label)
except:
print(f"No file at: {root}/{attack}/{model_name}_x_{train}.pt. Skipping.")
self.x_data = torch.cat(x_list)
self.y_data = torch.cat(y_list)
torch.manual_seed(0)
rand=torch.randperm(self.y_data.shape[0]).clone()
self.x_data = self.x_data[rand]
self.y_data = self.y_data[rand]
self.transform = transform
if num_base == 2:
if (len(attack_types) == 3): #linf, (l1 l2)
self.y_data[self.y_data == 2] = 1
elif (len(attack_types) == 4): #(linf l2 recolor) stadv
self.y_data[self.y_data < 3] = 0
self.y_data[self.y_data == 3] = 1
self.len = self.x_data.shape[0]
def __getitem__(self, index):
x_data_index = self.x_data[index]
if self.transform:
x_data_index = self.transform(x_data_index)
return (x_data_index, self.y_data[index])
def __len__(self):
return self.len
import tempfile
import shutil
class StridedImageFolder(datasets.ImageFolder):
def __init__(self, root, *args, **kwargs):
self.stride = kwargs['stride']
del kwargs['stride']
self.new_root = tempfile.mkdtemp()
classes = [d for d in os.listdir(root) if os.path.isdir(os.path.join(root, d))]
classes.sort()
classes = classes[::self.stride]
for cls in classes:
os.symlink(os.path.join(root, cls), os.path.join(self.new_root, cls))
super().__init__(self.new_root, *args, **kwargs)
def __del__(self):
shutil.rmtree(self.new_root)