-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·85 lines (72 loc) · 4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from common_corruptions import *
from copy import deepcopy
def test_setup(args):
device = torch.device("cuda:{0}".format(args.gpu_id) if torch.cuda.is_available() else "cpu")
print(device)
torch.cuda.set_device(device)
torch.manual_seed(args.seed)
location = args.path
if location[-1] == "/": location = location[:-1]
if(not os.path.exists(location)): os.makedirs(location)
args.device = device
if args.mode.lower() == "pipeline":
if args.layer_num == -1: f_e = None
else: f_e = FeatureExtractor(args); f_e = nn.DataParallel(f_e).to(device)
p_c = get_perturb_classifier(args)
try:
p_c.load_state_dict(torch.load(args.path + ".pt", map_location =args.device)); p_c = nn.DataParallel(p_c).to(device)
except:
p_c = nn.DataParallel(p_c).to(device); p_c.load_state_dict(torch.load(args.path + ".pt", map_location =args.device))
model = Pipeline(args, f_e, p_c); model = nn.DataParallel(model).to(device)
elif args.mode == "rand":
layer_nums = []
p_c_list = nn.ModuleList()
m_id_list = args.ensemble_id_list
location += "/rand"
for i in m_id_list:
location += f'_{i}'
if(not os.path.exists(location)):
os.makedirs(location)
for m_id in m_id_list:
loc = f"{args.path}model_{m_id}/model_info.txt"
parser = params.parse_args()
temp_args = parser.parse_args(); temp_args = params.add_params_file(temp_args,loc)
layer_nums.append(temp_args.layer_num) #This will be used to inform the feature extractor
p_ci = get_perturb_classifier(temp_args); p_ci = nn.DataParallel(p_ci).to(device)
p_ci.load_state_dict(torch.load(args.path + f"model_{m_id}/final.pt", map_location =args.device))
p_c_list.append(p_ci)
layer_nums = set(layer_nums)
if args.layer_num == -1: f_e = None
else: f_e = FeatureExtractor(args); f_e = nn.DataParallel(f_e).to(device)
args.layer_num_list = layer_nums
model = EnsemblePipeline(args, f_e, p_c_list); model = nn.DataParallel(model).to(device)
else:
model = get_model(args)
if args.model_type != "resnet50": #For resnet50 models, the pip package loads it with the weights.
try:
model.load_state_dict(torch.load(args.path + ".pt", map_location = device))
model = nn.DataParallel(model).to(device)
except:
model = nn.DataParallel(model).to(device)
model.load_state_dict(torch.load(args.path + ".pt", map_location = device))
else:
model = nn.DataParallel(model).to(device)
file = open(f"{location}/test_logs.txt", "a")
model.eval()
print(f"Saving attack misclassification at {location}")
if args.attack == 'corruption':
analyze_corruptions(args)
test_corruptions(args, model)
elif args.attack == 'clean': clean_acc(args, model, location)
elif args.attack == 'pgd': quick_eval(args, model, location)
elif args.attack == 'auto': test_auto_attack(args, model, location, max_check = 1000, subset = 1, save_images = False)
else: test_foolbox(args, model, location, max_check = 1000, subset = args.subset)
# python test.py --config configs/MNIST_pipeline.json --num_base 2 --batch_size 1000 --layer_num -1 --use_noise 1 --path models/m_cnn/Static/model_0/final --distance linf
# python test.py --config configs/CIFAR10_pipeline.json --num_base 2 --batch_size 200 --layer_num -1 --use_noise 1 --path models/m_wrn-28-10/Static/model_5/final --dropout 0 --distance linf
# python test.py --config configs/CIFAR10_pipeline.json --num_base 2 --batch_size 200 --layer_num -1 --use_noise 1 --path models/m_wrn-28-10/Static/model_6/final --dropout 0.7 --distance linf
if __name__ == "__main__":
parser = params.parse_args()
args = parser.parse_args()
args = params.add_config(args) if args.config_file != None else args
print(args)
test_setup(args)