forked from probml/pml-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgsoc2021.html
185 lines (136 loc) · 6.98 KB
/
gsoc2021.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
<title>Google Summer of Code 2021 - Project "PyProbML"</title>
<h1>Google Summer of Code 2021 - Project "PyProbML"</h1>
<p>
<img src="figures/cover1.jpg" style="height:200">
<img src="figures/cover2.jpg" style="height:200">
<p>
This page summarizes the contributions made to the
<a href="https://github.com/probml/pyprobml">pyprobml repo</a>
by some awesome members of the
<a href="https://summerofcode.withgoogle.com/">GSOC</a>
and <a href="https://www.outreachy.org/">Outreachy</a> communities
during the summer of 2021. The students were
mentored by
<a href="https://github.com/murphyk">Kevin Murphy</a>
and <a href="https://github.com/mjsML">Mahmoud Soliman</a>.
<p>
The goal of the summer project was
to create code to accompany my new textbook, <a href="https://probml.github.io/pml-book/">Probabilistic Machine Learning</a>.
The first task was
to finish translating <a href="https://github.com/probml/pmtk3">my old Matlab code</a> to Python, using modern libraries like
<a href="https://scikit-learn.org/stable/">sklearn</a> and <a href="https://github.com/google/jax">JAX</a>.
Fortunately, the students finished this translation task quicker than expected, so they had time to make lots of interesting new content.
Below I give a little taste of some of these new examples. But first, let me introduce the students...
<h1>The students</h1>
<style>
table, th, td {
border: 1px solid black;
border-collapse: collapse;
}
</style>
</head>
<table>
<tr>
<th>Name
<th>Country of origin
<th> Current institution
<th> End of summer report
</tr>
<tr>
<td> <a href="https://github.com/gerdm">Gerardo Duran-Martin</a>
<td> Mexico
<td> Queen Mary College, London
<td> <a href="https://gerdm.github.io/2021/08/16/gsoc2021">Blog </a>
<tr>
<td> <a href="https://github.com/Neoanarika">Ming Liang Ang</a>
<td> Singapore
<td> National University of Singapore
<td> <a href="https://neoanarika.github.io/posts/2021/08/gsoc/">Blog</a>
<tr>
<td> <a href="https://github.com/karalleyna">Aleyna Kara</a>
<td> Turkey
<td> Boğaziçi University, Turkey
<td> <a href="https://medium.com/@aleynakara98/google-summer-of-code-2021-a-probabilistic-perspective-9cc5a03ec91e">Blog</a>
<tr>
<td> <a href="https://github.com/Drishttii">Drishti Patel</a>
<td> India
<td> Arizona State University, USA
<td> <a href="https://drishttii.github.io/">Blog</a>
<tr>
<td> <a href="https://github.com/always-newbie161">Srikar Reddy</a>
<td> India
<td> IIT Hyderabad
<td> <a href="https://srikarjilugu-gsoc2021.blogspot.com/">Blog</a>
</table>
<p>
<h1>Highlight reel</h1>
Below I highlight one artefact per student, although they actually produced many more -- see their reports for details.
<h2><a id="hmm">HMMs for changepoint detection</h2>
<a href="https://colab.research.google.com/github/probml/probml-notebooks/blob/main/notebooks/hmm_poisson_changepoint_jax.ipynb">hmm_poisson_changepoint_jax.ipynb</a>, by Aleyna.
<p>
This uses an HMM with $K$ hidden states to segment a scalar time series
into different "regimes".
The observation (emission) model is Poisson.
<br>
The <a href="https://www.tensorflow.org/probability/examples/Multiple_changepoint_detection_and_Bayesian_model_selection">original notebook</a> for this demo
was written using the <a href="https://www.tensorflow.org/probability/examples/TensorFlow_Distributions_Tutorial">Tensorflow probability distributions</a> library.
<br>
Unfortunately the <a href="https://github.com/tensorflow/probability/blob/main/tensorflow_probability/python/distributions/hidden_markov_model.py#L41-L1316">TFP source code for the HMM class</a>
is somewhat hard to read (mostly due to the need to handle batches), so we decided to write a
<a href="https://github.com/deepmind/distrax/blob/master/distrax/_src/utils/hmm.py">
pure JAX implementation of HMMs</a>.
<br>
This is much simpler, due to JAX primitives such as vmap.
Our code has since been upstreamed into <a href="https://github.com/deepmind/distrax">distrax library</a>
from Deepmind. (Distrax is a JAX version of part of the TFP distributions library).
<br>
<p>
<img src="figures/hmm-changepoints.png" style="height:300">
<h2> ><a id="mixfa">Mixtures of (low-rank) Gaussians for CelebA faces</h2>
<a href="https://colab.research.google.com/github/probml/probml-notebooks/blob/main/notebooks/mix_PPCA_celeba.ipynb">mix_PPCA_celeba.ipynb</a>, by Drishti.
<p>
This colab uses <a href="https://github.com/eitanrich/torch-mfa">this pytorch code</a> to demonstrate how to fit a mixture of low-rank Gaussians (i.e., probabilistic principal components model) to the CelebA face dataset.
<br>
After fitting, we can easily generate samples, and perform imputation
from occluded images, as shown below.
<p>
<img src="figures/mfa-samples.jpeg" style="height:200">
<img src="figures/mfa-occluded.jpeg" style="height:200">
<img src="figures/mfa-recon.jpeg" style="height:200">
<p>
<h2> <a id="ekfmlp">EKF for online training of an MLP</h2>
<a href="https://github.com/probml/JSL/blob/main/jsl/demos/ekf_mlp_anim.py">ekf_mlp_anim_demo.py</a>
by Gerardo.
<p>
We fit a shallow MLP to a sequence of (x,y) pairs which arrive in a streaming fashion.
<br>
One epoch of Bayesian training trumps multiple epochs of SGD training!
</p><video width="500" controls=""> <source src="https://github.com/probml/probml-data/blob/main/data/ekf_mlp_demo.mp4?raw=true" type="video/mp4" /> Your browser does not support HTML video. </video><p>
<h2> <a id="potts">Fast blocked Gibbs sampling for the Potts model using JAX</h2>
<a href="https://colab.research.google.com/github/probml/probml-notebooks/blob/main/notebooks/gibbs_demo_potts_jax.ipynb">gibbs_demo_potts_jax.ipynb</a>, by Ming.
<p>
Summary slide below. Note the phase transition at J=1.42, as predicted by theory.
<br>
This demo took 18 minutes with numpy+numba, but only 6s with JAX+math tricks :).
<p>
<img src="figures/potts-slide.png" style="height:400">
<h2><a id="cliplogreg">Imagenette classifier using logistic regression + CLIP preprocessing</h2>
<a href="https://colab.research.google.com/github/probml/probml-notebooks/blob/main/notebooks/clip_imagenette_demo.ipynb">clip_imagenette_demo.ipynb</a> by Srikar.
<p>
<a href="https://www.tensorflow.org/datasets/catalog/imagenette">ImageNette</a>
is a small version of Imagenet with just 10 classes,
and ~10k training and ~4k test examples.
<br>
We used a pre-trained
<a href="https://github.com/openai/CLIP">CLIP</a> model to perform feature extraction,
and then fit a linear logistic regression model,
using
<a href="https://scikit-learn.org/stable/">sklearn</a>,
<a href="https://github.com/google/flax">flax</a>,
and <a href="https://pytorchlightning.ai/">pytorch lightning</a>.
<br>
Since the model has a convex loss,
all methods get the same test set accuracy, namely 98.98%.
Sample results below,
<p>
<img src="figures/imagenette-logreg-clip.png" style="height:300">